Learning Distances Between Graph Nodes and Edges

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2022)

Abstract

Several applications can be developed when graphs represent objects composed of local parts and their relations. For instance, chemical compounds are characterised by nodes that represent chemical elements and edges that represent bonds between them. Given this representation, applications such as drug discovery (graph generation), toxicity prediction (graph regression) or drug analysis (graph classification) can be developed. In all of these applications, it is crucial to properly define how similar are the local parts and how important are them in the application at hand. We present a method that learns these similarities of local parts of the objects and also how important are when objects are represented by attributed graphs and attributes on the graphs are categorical values. Although the method is independent of the application, we have empirically tested on drug classification obtaining competitive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://deim.urv.cat/francesc.serratosa/databases/.

References

  1. Algabli, S., Serratosa, F.: Embedding the node-to-node map**s to learn the graph edit distance parameters. Pattern Recogn. Lett. 112, 353–360 (2018)

    Article  Google Scholar 

  2. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)

    Article  Google Scholar 

  3. Cortés, X., Conte, D., Cardot, H.: Learning edit cost estimation models for graph edit distance. Pattern Recogn. Lett. 125, 256–263 (2019)

    Article  Google Scholar 

  4. Cortés, X., Conte, D., Cardot, H., Serratosa, F.: A deep neural network architecture to estimate node assignment costs for the graph edit distance. In: Proceedings of Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, S+SSPR 2018, Bei**g, China, 17–19 August 2018, Vol. 4, pp. 326–336 (2018)

    Google Scholar 

  5. Garcia-Hernandez, C., Fernández, A., Serratosa, F.: Ligand-based virtual screening using graph edit distance as molecular similarity measure. J. Chem. Inf.. Model. 59 (2019)

    Google Scholar 

  6. Garcia-Hernandez, C., Fernández, A., Serratosa, F.: Learning the edit costs of graph edit distance applied to ligand-based virtual screening. Curr. Top. Med. Chem. 20(18), 1582–1592 (2020)

    Article  Google Scholar 

  7. Gatica, E.A., Cavasotto, C.N.: Ligand and decoy sets for docking to g protein-coupled receptors. J. Chem. Inf. Model. 52(1), 1–6 (2011)

    Article  Google Scholar 

  8. Harper, G., Bravi, G.S., Pickett, S.D., Hussain, J., Green, D.V.S.: The reduced graph descriptor in virtual screening and data-driven clustering of high-throughput screening data. J. Chem. Inf. Comput. Sci. 44(6), 2145–2156 (2004). https://doi.org/10.1021/ci049860f

    Article  Google Scholar 

  9. Lagarde, N., et al.: NRLIST BDB, the manually curated nuclear receptors ligands and structures benchmarking database. J. Med. Chem. 57(7), 3117–3125 (2014)

    Article  Google Scholar 

  10. Leordeanu, M., Sukthankar, R., Hebert, M.: Unsupervised learning for graph matching. Int. J. Comput. Vision 96(1), 28–45 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Martineau, M., Raveaux, R., Conte, D., Venturini, G.: Learning error-correcting graph matching with a multiclass neural network. Pattern Recogn. Lett. 134, 68–76 (2018)

    Google Scholar 

  12. Mysinger, M.M., Carchia, M., Irwin, J.J., Shoichet, B.K.: Directory of useful decoys, enhanced (dud-e): better ligands and decoys for better benchmarking. J. Med. Chem. 55(14), 6582–6594 (2012)

    Article  Google Scholar 

  13. Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph matching. IEEE Trans. Syst. Man Cybernet.. Part B (Cybernetics)35(3), 503–514 (2005)

    Google Scholar 

  14. Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit distance. Inf. Sci. 177(1), 239–247 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rica, E., Álvarez, S., Serratosa, F.: On-line learning the graph edit distance costs. Pattern Recognit. Lett. 146, 55–62 (2021). https://doi.org/10.1016/j.patrec.2021.02.019, https://doi.org/10.1016/j.patrec.2021.02.019

  16. Rohrer, S.G., Baumann, K.: Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data. J. Chem. Inf. Model. 49(2), 169–184 (2009)

    Article  Google Scholar 

  17. Sanders, M.P., et al.: Comparative analysis of pharmacophore screening tools. J. Chem. Inf. Model. 52(6), 1607–1620 (2012)

    Article  Google Scholar 

  18. Santacruz, P., Serratosa, F.: Error-tolerant graph matching in linear computational cost using an initial small partial matching. Pattern Recogn. Lett. 134, 10–19 (2018)

    Google Scholar 

  19. Santacruz, P., Serratosa, F.: Learning the graph edit costs based on a learning model applied to sub-optimal graph matching. Neural Process. Lett. 51, 1–24 (2019)

    Google Scholar 

  20. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recogn. Lett. 45, 244–250 (2014)

    Article  Google Scholar 

  21. Serratosa, F.: Redefining the graph edit distance. SN Comput. Sci. 2(6), 1–7 (2021)

    Article  Google Scholar 

  22. Skoda, P., Hoksza, D.: Benchmarking platform for ligand-based virtual screening. In: Proceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016, pp. 1220–1227 (2017). https://doi.org/10.1109/BIBM.2016.7822693

  23. **a, J., Tilahun, E.L., Reid, T.E., Zhang, L., Wang, X.S.: Benchmarking methods and data sets for ligand enrichment assessment in virtual screening. Methods 71, 146–157 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from Martí-Franquès Research Fellowship Programme of Universitat Rovira i Virgili.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Serratosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rica, E., Álvarez, S., Serratosa, F. (2022). Learning Distances Between Graph Nodes and Edges. In: Krzyzak, A., Suen, C.Y., Torsello, A., Nobile, N. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2022. Lecture Notes in Computer Science, vol 13813. Springer, Cham. https://doi.org/10.1007/978-3-031-23028-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23028-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23027-1

  • Online ISBN: 978-3-031-23028-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation