A Differential Privacy Mechanism for Deceiving Cyber Attacks in IoT Networks

  • Conference paper
  • First Online:
Network and System Security (NSS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13787))

Included in the following conference series:

  • 1192 Accesses

Abstract

Protecting Internet of Things (IoT) network from private data breach is a grand challenge. Data breach may occur when networks’ statistical information is disclosed due to network scanning or data stored on the IoT devices is accessed by attackers because of lack of protection on IoT devices. To protect IoT networks, effective proactive cyber defence technologies (e.g., Moving Target Defence (MTD) and deception) have been proposed. They defend against attacks by dynamically changing attack surface or hiding true network information. However, little work considered the protection of statistical information of IoT network, such as the number of VLANs or the number of devices across VLANs. This type of information may leak the network’s operational information to attackers (e.g., functional information of VLANs). To address this problem, we propose a differential privacy (DP)-based defence method to mitigate its leakage. In this paper, we strategically obfuscate VLANs’ statistical information by integrating DP with MTD and deception technologies. Software-defined networking technology is leveraged to manage data flows among devices and support shuffling-based MTD. Two strategies (random and intelligent) are considered for defence deployment. A greedy algorithm is designed to explore the trade-off between defence cost and privacy protection level. We theoretically prove that the proposed method meets the definition of DP, thus offering solid privacy protection to the operational information of an IoT network. Extensive experimental results further demonstrate that, for a given defence budget, there exists a trade-off between protection level and cost. Moreover, the intelligent deployment strategy is more cost-effective than the random one under the same settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    IP shuffling does not change the VLAN that a device resides nor affect the communications between the device and other devices; but it gives attackers a different network view in their reconnaissance phase.

References

  1. Gokhale, P., Bhat, O., Bhat, S.: Introduction to IoT. Int. Adv. Res. J. Sci. Eng. Technol. 5(1), 41–44 (2018)

    Google Scholar 

  2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  MATH  Google Scholar 

  3. Help Net Security. Threat highlight: Analysis of 5+ million unmanaged, iot, and iomt devices (2020). https://www.helpnetsecurity.com/2020/07/24/analysis-of-5-million-unmanaged-iot-and-iomt-devices/

  4. THALES. IoT security issues in 2022: A business perspective (2020). https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/magazine/internet-threats

  5. Ge, M., Kim, D.S.: A framework for modeling and assessing security of the internet of things. In: 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), pp. 776–781. IEEE (2015)

    Google Scholar 

  6. Nayak, A.K., Reimers, A., Feamster, N., Clark, R.: Resonance: dynamic access control for enterprise networks. In: Proceedings of the 1st ACM Workshop on Research on Enterprise Networking, pp. 11–18 (2009)

    Google Scholar 

  7. Almeshekah, M.H., Spafford, E.H.: Planning and integrating deception into computer security defenses. In: Proceedings of the 2014 New Security Paradigms Workshop, pp. 127–138 (2014)

    Google Scholar 

  8. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats, vol. 54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4614-0977-9

    Book  Google Scholar 

  9. Crouse, M., Prosser, B., Fulp, E.W.: Probabilistic performance analysis of moving target and deception reconnaissance defenses. In: Proceedings of the Second ACM Workshop on Moving Target Defense, pp. 21–29 (2015)

    Google Scholar 

  10. Wang, C., Lu, Z.: Cyber deception: overview and the road ahead. IEEE Secur. Priv. 16(2), 80–85 (2018)

    Article  MathSciNet  Google Scholar 

  11. Cho, J.H., et al.: Toward proactive, adaptive defense: a survey on moving target defense. IEEE Commun. Surv. Tutor. 22(1), 709–745 (2020)

    Article  Google Scholar 

  12. Ge, M., Cho, J., Ishfaq, B., Dong, S.K.: Modeling and analysis of integrated proactive defence mechanisms for internet of things. In: Modeling and Design of Secure Internet of Things (2020)

    Google Scholar 

  13. Ge, M., Hong, J.B., Yusuf, S.E., Kim, D.S.: Proactive defense mechanisms for the software-defined internet of things with non-patchable vulnerabilities. Future Gener. Comput. Syst. 78, 568–582 (2018)

    Article  Google Scholar 

  14. Ge, M., Cho, J.-H., Kamhoua, C.A., Kim, D.S.: Optimal deployments of defense mechanisms for the internet of things. In: 2018 International Workshop on Secure Internet of Things (SIoT), pp. 8–17. IEEE (2018)

    Google Scholar 

  15. Ge, M., Cho, J.-H., Kim, D.S., Dixit, G., Chen, I.-R.: Proactive defense for internet-of-things: Integrating moving target defense with cyberdeception. ar**v preprint ar**v:2005.04220 (2020)

  16. Mercado-Velázquez, A.A., Escamilla-Ambrosio, P.J., Ortiz-Rodriguez, F.: A moving target defense strategy for internet of things cybersecurity. IEEE Access 9, 118406–118418 (2021)

    Article  Google Scholar 

  17. Lu, Z., Wang, C., Zhao, S.: Cyber deception for computer and network security: survey and challenges. ar**v preprint ar**v:2007.14497 (2020)

  18. Juels, A., Rivest, R L.: Honeywords: making password-cracking detectable. In: Proceedings of the 2013 ACM SIGSAC, pp. 145–160 (2013)

    Google Scholar 

  19. La, Q.D., Quek, T.Q., Lee, J., **, S., Zhu, H.: Deceptive attack and defense game in honeypot-enabled networks for the internet of things. IEEE Internet Things J. 3(6), 1025–1035 (2016)

    Article  Google Scholar 

  20. Tsemogne, O., Hayel, Y., Kamhoua, C., Deugoué, G.: Game theoretic modeling of cyber deception against epidemic botnets in internet of things. IEEE Internet Things J. 9, 2678–2687 (2021)

    Article  Google Scholar 

  21. Ye, D., Zhu, T., Shen, S., Zhou, W.: A differentially private game theoretic approach for deceiving cyber adversaries. IEEE TIFS 16, 569–584 (2020)

    Google Scholar 

  22. ONF. Openflow switch specification (2017). https://opennetworking.org/sdn-resources/openflow-switch-specification/

  23. Cadini, F., Zio, E., Petrescu, C.-A.: Using centrality measures to rank the importance of the components of a complex network infrastructure. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 155–167. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03552-4_14

    Chapter  Google Scholar 

  24. Yoon, S., Cho, J.-H., Kim, D.S., Moore, T.J., Free-Nelson, F., Lim, H.: Attack graph-based moving target defense in software-defined networks. IEEE Trans. Netw. Serv. Manag. 17(3), 1653–1668 (2020)

    Article  Google Scholar 

  25. Sharma, D.P., Kim, D.S., Yoon, S., Lim, H., Cho, J.-H., Moore, T.J.: Frvm: flexible random virtual ip multiplexing in software-defined networks. In: 12th IEEE International Conference On Big Data Science and Engineering (TrustCom/BigDataSE), pp. 579–587. IEEE (2018)

    Google Scholar 

  26. TrapX. Security’s deception grid (2017). https://www.scmagazine.com/trapx-security-deceptiongrid/article/681820

  27. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  28. Zhu, T., **ong, P., Li, G., Zhou, W., Philip, S.Y.: Differentially private model publishing in cyber physical systems. Future Gener. Comput. Syst. 108, 1297–1306 (2020)

    Article  Google Scholar 

  29. Li, N., Lyu, M., Su, D., Yang, W.: Differential privacy: from theory to practice. Synth. Lect. Inf. Secur. Priv. Trust 8(4), 1–138 (2016)

    Google Scholar 

  30. Attivo Networks. Attivo botsink deception platform (2016). https://www.scmagazine.com/product-test/-/attivo-botsink-deception-platform

  31. Alavizadeh, H., Hong, J.B., Kim, D.S., Jang-Jaccard, J.: Evaluating the effectiveness of shuffle and redundancy mtd techniques in the cloud. Comput. Secur. 102, 102091 (2021)

    Article  Google Scholar 

  32. James, A., Simon, M.B.: Medjack. 3 medical device hijack cyber attacks evolve. In: Proceedings of RSA Conference, San Francisco, CA, USA (2017)

    Google Scholar 

  33. Meggitt, S.: Medjack attacks: the scariest part of the hospital (2018)

    Google Scholar 

  34. Medical Equipment Leasing Cost. Medical equipment leasing cost (2020). https://costhack.com/medical-equipment-leasing-cost/

  35. Computer. How much does it cost to lease it equipment? (2022). https://www.costowl.com/rental/equipment-leasing/equipment-leasing-computer-cost/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Yu Zhang .

Editor information

Editors and Affiliations

A Proof of Proposition 1

A Proof of Proposition 1

Proof

In the case of Algorithm 1, for neighbouring datasets \(N_{k}\) and \(N_{k}'\), without loss of generality, let \(\mathcal {A}\) be the step of Algorithm 1 that injects Laplace noise (i.e., Line 3 of Algorithm 1) and X be a random variable that follows Lap(\((\frac{|K|\cdot \varDelta }{\epsilon })\)). For any output value z, we have:

$$\begin{aligned} \begin{aligned} \frac{\textrm{Pr}[\mathcal {A}(N_{k})=z]}{\textrm{Pr}[\mathcal {A}(N_{k}')=z]} \le \textrm{exp}^{\frac{\epsilon }{|K|}}. \end{aligned} \end{aligned}$$
(4)

For any count function f, \(A_{f(N_{k})}=f(N_{k})+\textrm{Lap}(\frac{|K|\cdot \varDelta }{ \epsilon })\), it is easy to conclude

$$\begin{aligned} \frac{\textrm{Pr}[\mathcal {A}_{f(N_{k})}=z]}{\textrm{Pr}[\mathcal {A}_{f(N_{k}')}=z]}&= \frac{\textrm{Pr}[f(N_{k})+X = z]}{ \textrm{Pr} [f(N_{k}')+X =z]} \nonumber \\&=\frac{\textrm{Pr}[X = z-f(N_{k})]}{\textrm{Pr}[X = z-f(N_{k}')]}\nonumber \\&=\frac{\frac{\epsilon }{2\cdot |K|\cdot \varDelta }\cdot \textrm{exp}^{\frac{-\epsilon \cdot |z-f(N_{k})|}{|K|\cdot \varDelta }}}{\frac{\epsilon }{2\cdot |K|\cdot \varDelta }\cdot \textrm{exp}^{\frac{-\epsilon \cdot |z-f(N_{k}')|}{|K|\cdot \varDelta }}}\nonumber \\&=\textrm{exp}^{(\frac{-\epsilon \cdot |z-f(N_{k})|}{|K|\cdot \varDelta }-\frac{-\epsilon \cdot |z-f(N_{k}')|}{|K|\cdot \varDelta })}\nonumber \\&=\textrm{exp}^{(\epsilon \cdot (\frac{|z-f(N_{k}')|-|z-f(N_{k})|}{|K|\cdot \varDelta }))}\nonumber \\&\le \textrm{exp}^{(\frac{\epsilon \cdot |f(N_{k}')-f(N_{k})|}{|K|\cdot \varDelta })}. \end{aligned}$$
(5)

Since the sensitivity \(\varDelta \) is 1 as mentioned before, and by definition of sensitivity, \(\varDelta =\textrm{max}_{N_{k}, N_{k}'}\left\| f(N_{k}')-f(N_{k})\right\| _{1}\). Hence, Eq. (5) becomes

$$\begin{aligned} \frac{\textrm{Pr}[\mathcal {A}_{f(N_{k})}=z]}{\textrm{Pr}[\mathcal {A}_{f(N_{k}')}=z]}&= \frac{\textrm{Pr}[f(N_{k})+X = z]}{ \textrm{Pr} [f(N_{k}')+X =z]} \nonumber \\&\le \textrm{exp}^{(\frac{\epsilon \cdot |f(N_{k}')-f(N_{k})|}{|K|\cdot \varDelta })}\nonumber \\&\le \textrm{exp}^{(\frac{\epsilon }{|K|})}. \end{aligned}$$
(6)

Thus, each step of Algorithm 1 satisfies \(\frac{\epsilon }{\left| K\right| }\hbox {-}DP\). As there are \(\left| K\right| \) steps in Algorithm 1, based on Theorem 1, Algorithm 1 satisfies \((\sum _{i=1}^{|K|}\frac{\epsilon }{\left| K\right| })\hbox {-}DP\). Therefore, Algorithm 1 satisfies \(\epsilon \hbox {-}DP\).

Without loss of generality, denote Algorithm 1 as \(\mathcal {A}_{1}\) and Algorithm 2 as \(\mathcal {A}_{2}\). In the case of Algorithm 2, for neighbouring \(N_{k}\) and \(N_{k}'\), let z be the output value of algorithm \(\mathcal {A}_{1}\) and O be the set of output value of algorithm \(\mathcal {A}_{2}\). According to the discussion above, we have proved \(\mathcal {A}_{1}\) satisfies \(\epsilon \hbox {-}DP\), so we have

$$\begin{aligned} \frac{\textrm{Pr}[\mathcal {A}_{1}(N_{k})=z]}{\textrm{Pr}[\mathcal {A}_{1}(N_{k}')=z]}&\le \textrm{exp}^{\epsilon }. \end{aligned}$$
(7)

For any \(o \in O\), we have

$$\begin{aligned} \textrm{Pr}[\mathcal {A}_{2} \left( \mathcal {A}_{1}(N_{k})\right) =o]&= \sum _{o \in O}\textrm{Pr}[\mathcal {A}_{1} (N_{k})=z]\textrm{Pr}[\mathcal {A}_{2} (z)=o] \nonumber \\&\le \sum _{o \in O}\mathrm{exp^{\epsilon }}\textrm{Pr}[\mathcal {A}_{1} (N_{k}')=z]\textrm{Pr}[\mathcal {A}_{2} (z)=o] \nonumber \\&= \sum _{o \in O}\mathrm{exp^{\epsilon }}\textrm{Pr}[\mathcal {A}_{2} \left( \mathcal {A}_{1}(N_{k}')\right) =o]. \end{aligned}$$
(8)

Hence, according to Eq. (8), we have

$$\begin{aligned} \frac{\textrm{Pr}[\mathcal {A}_{2} \left( \mathcal {A}_{1}(N_{k})\right) =o]}{\textrm{Pr}[\mathcal {A}_{2} \left( \mathcal {A}_{1}(N_{k}')\right) =o]}&\le \mathrm{exp^{\epsilon }}, \end{aligned}$$
(9)

Therefore, Algorithm 2 also satisfies \(\epsilon \hbox {-}DP\) based on the Post-processing Theorem 2.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, G., Ge, M., Gao, S., Lu, X., Zhang, L.Y., Doss, R. (2022). A Differential Privacy Mechanism for Deceiving Cyber Attacks in IoT Networks. In: Yuan, X., Bai, G., Alcaraz, C., Majumdar, S. (eds) Network and System Security. NSS 2022. Lecture Notes in Computer Science, vol 13787. Springer, Cham. https://doi.org/10.1007/978-3-031-23020-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23020-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23019-6

  • Online ISBN: 978-3-031-23020-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation