Least-Squares Estimation of Keypoint Coordinate for Human Pose Estimation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13536))

Included in the following conference series:

  • 1720 Accesses

Abstract

The research on human pose estimation has recently been promoted to a new high degree. As a result, existing methods that are widely used but flawed in theory must be rethought. Most researchers focus on enhancing network structure and data processing details, yet neglect to study encoding-decoding methods for keypoint coordinate. In this paper, we rethink recent encoding-decoding methods and further propose a new, elegant and reliable one. Our method is referred to as Least-squares Estimation of Keypoint Coordinate (LSEC), which is a plug-in and can be conveniently used in recent state-of-the-art (SOTA) human pose estimation models. LSEC is mathematically rigorous and unbiased, and it can compensate for the inherent bias introduced by the existing encoding-decoding methods. Besides, LSEC greatly improves the robustness of Gaussian heatmap based human pose estimation methods against adversarial attack by noise. Experiments demonstrate the effective performance and robustness of our proposed method. We will release the source code later.

Student paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aberman, K., Wu, R., Lischinski, D., Chen, B., Cohen-Or, D.: Learning character-agnostic motion for motion retargeting in 2D. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)

    Article  Google Scholar 

  2. Ahmed, S.A., Dogra, D.P., Kar, S., Roy, P.P.: Trajectory-based surveillance analysis: a survey. IEEE Trans. Circ. Syst. Video Technol. 29(7), 1985–1997 (2018)

    Article  Google Scholar 

  3. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

  4. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  5. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7103–7112 (2018)

    Google Scholar 

  6. Cheng, B., **ao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: HigherHRNet: scale-aware representation learning for bottom-up human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5386–5395 (2020)

    Google Scholar 

  7. Choi, H., Moon, G., Lee, K.M.: Pose2Mesh: Graph convolutional network for 3D human pose and mesh recovery from a 2D human pose. ar**v preprint ar**v:2008.09047 (2020)

  8. Fang, H.S., **e, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2334–2343 (2017)

    Google Scholar 

  9. Ge, L., et al.: 3D hand shape and pose estimation from a single RGB image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10833–10842 (2019)

    Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  11. Huang, J., Zhu, Z., Guo, F., Huang, G.: The devil is in the details: delving into unbiased data processing for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5700–5709 (2020)

    Google Scholar 

  12. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_3

    Chapter  Google Scholar 

  13. Khirodkar, R., Chari, V., Agrawal, A., Tyagi, A.: Multi-instance pose networks: rethinking top-down pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3122–3131 (October 2021)

    Google Scholar 

  14. Li, J., Su, W., Wang, Z.: Simple pose: rethinking and improving a bottom-up approach for multi-person pose estimation. In: AAAI, pp. 11354–11361 (2020)

    Google Scholar 

  15. Li, J., et al.: Human pose regression with residual log-likelihood estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11025–11034 (2021)

    Google Scholar 

  16. Li, J., Wang, C., Zhu, H., Mao, Y., Fang, H.S., Lu, C.: CrowdPose: Efficient crowded scenes pose estimation and a new benchmark. ar**v preprint ar**v:1812.00324 (2018)

  17. Li, K., Wang, S., Zhang, X., Xu, Y., Xu, W., Tu, Z.: Pose recognition with cascade transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1944–1953 (2021)

    Google Scholar 

  18. Li, S., Chan, A.B.: 3D human pose estimation from monocular images with deep convolutional neural network. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 332–347. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16808-1_23

    Chapter  Google Scholar 

  19. Li, Y., et al.: Is 2D heatmap representation even necessary for human pose estimation? ar**v preprint ar**v:2107.03332 (2021)

  20. Li, Y., et al.: TokenPose: learning keypoint tokens for human pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11313–11322 (2021)

    Google Scholar 

  21. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  22. Luvizon, D.C., Tabia, H., Picard, D.: Human pose regression by combining indirect part detection and contextual information. Comput. Graph. 85, 15–22 (2019)

    Article  Google Scholar 

  23. Moon, G., Chang, J.Y., Lee, K.M.: PoseFix: model-agnostic general human pose refinement network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7773–7781 (2019)

    Google Scholar 

  24. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  25. Nibali, A., He, Z., Morgan, S., Prendergast, L.: Numerical coordinate regression with convolutional neural networks. ar**v preprint ar**v:1801.07372 (2018)

  26. Obdržálek, Š., Kurillo, G., Han, J., Abresch, T., Bajcsy, R.: Real-time human pose detection and tracking for tele-rehabilitation in virtual reality. In: Medicine Meets Virtual Reality, vol. 19, pp. 320–324. IOS Press (2012)

    Google Scholar 

  27. Peng, Y., Jiang, Z.: DoubleHigherNet: coarse-to-fine precise heatmap bottom-up dynamic pose computer intelligent estimation. J. Phys. Conf. Ser. 2033, 012068 (2021)

    Article  Google Scholar 

  28. Qiu, S., Liu, Q., Zhou, S., Wu, C.: Review of artificial intelligence adversarial attack and defense technologies. Appl. Sci. 9(5), 909 (2019)

    Article  Google Scholar 

  29. Sun, K., **ao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  30. Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653–1660 (2014)

    Google Scholar 

  31. Wang, H., Wang, L.: Cross-agent action recognition. IEEE Trans. Circ. Syst. Video Technol. 28(10), 2908–2919 (2017)

    Article  Google Scholar 

  32. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4724–4732 (2016)

    Google Scholar 

  33. Wu, S., et al.: Graph-based 3D multi-person pose estimation using multi-view images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11148–11157 (2021)

    Google Scholar 

  34. **ao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 466–481 (2018)

    Google Scholar 

  35. Yang, S., Quan, Z., Nie, M., Yang, W.: TransPose: keypoint localization via transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11802–11812 (2021)

    Google Scholar 

  36. Yang, W., Li, S., Ouyang, W., Li, H., Wang, X.: Learning feature pyramids for human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1281–1290 (2017)

    Google Scholar 

  37. Zhang, F., Zhu, X., Dai, H., Ye, M., Zhu, C.: Distribution-aware coordinate representation for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7093–7102 (2020)

    Google Scholar 

  38. Zhao, L., Xu, J., Gong, C., Yang, J., Zuo, W., Gao, X.: Learning to acquire the quality of human pose estimation. IEEE Trans. Circ. Syst. Video Technol. 31(4), 1555–1568 (2020)

    Article  Google Scholar 

  39. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 398–407 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengfu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

**ang, L., Li, J., Wang, Z. (2022). Least-Squares Estimation of Keypoint Coordinate for Human Pose Estimation. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18913-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18912-8

  • Online ISBN: 978-3-031-18913-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation