Automatic Fetal Fat Quantification from MRI

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2022)

Abstract

Normal fetal adipose tissue (AT) development is essential for perinatal well-being. AT, or simply fat, stores energy in the form of lipids. Malnourishment may result in excessive or depleted adiposity. Although previous studies showed a correlation between the amount of AT and perinatal outcome, prenatal assessment of AT is limited by lacking quantitative methods. Using magnetic resonance imaging (MRI), 3D fat- and water-only images of the entire fetus can be obtained from two-point Dixon images to enable AT lipid quantification. This paper is the first to present a methodology for develo** a deep learning (DL) based method for fetal fat segmentation based on Dixon MRI. It optimizes radiologists’ manual fetal fat delineation time to produce annotated training dataset. It consists of two steps: 1) model-based semi-automatic fetal fat segmentations, reviewed and corrected by a radiologist; 2) automatic fetal fat segmentation using DL networks trained on the resulting annotated dataset. Segmentation of 51 fetuses was performed with the semi-automatic method. Three DL networks were trained. We show a significant improvement in segmentation times (3:38 h \(\rightarrow \,{<}\)1 h) and observer variability (Dice of 0.738 \(\rightarrow \) 0.906) compared to manual segmentation. Automatic segmentation of 24 test cases with the 3D Residual U-Net, nn-UNet and SWIN-UNetR transformer networks yields a mean Dice score of 0.863, 0.787 and 0.856, respectively. These results are better than the manual observer variability, and comparable to automatic adult and pediatric fat segmentation. A Radiologist reviewed and corrected six new independent cases segmented using the best performing network (3D Residual U-Net), resulting in a Dice score of 0.961 and a significantly reduced correction time of 15:20 min. Using these novel segmentation methods and short MRI acquisition time, whole body subcutaneous lipids can be quantified for individual fetuses in the clinic and large-cohort research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banting, S.A., et al.: Estimation of neonatal body fat percentage predicts neonatal hypothermia better than birthweight centile. J. Matern.-Fetal Neonatal Med. 1–8 (2022)

    Google Scholar 

  2. Berger-Kulemann, V., et al.: Quantification of the subcutaneous fat layer with MRI in fetuses of healthy mothers with no underlying metabolic disease vs. fetuses of diabetic and obese mothers. J. Perinat. Med. (2012)

    Google Scholar 

  3. Blondiaux, E., et al.: Developmental patterns of fetal fat and corresponding signal on T1-weighted magnetic resonance imaging. Pediatr. Radiol. 48(3), 317–324 (2018)

    Article  Google Scholar 

  4. Carberry, A.E., Raynes-Greenow, C.H., Turner, R.M., Askie, L.M., Jeffery, H.E.: Is body fat percentage a better measure of undernutrition in newborns than birth weight percentiles? Pediatr. Res. 74(6), 730–736 (2013)

    Article  Google Scholar 

  5. Cassart, M., Garel, C.: European overview of current practice of fetal imaging by pediatric radiologists: a new task force is launched. Pediatr. Radiol. 50(12), 1794–1798 (2020)

    Article  Google Scholar 

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. MONAI Consortium: MONAI: medical open network for AI (2022). https://doi.org/10.5281/zenodo.6639453

  8. Dixon, W.T.: Simple proton spectroscopic imaging. Radiology 153(1), 189–194 (1984)

    Article  Google Scholar 

  9. Dudovitch, G., Link-Sourani, D., Ben Sira, L., Miller, E., Ben Bashat, D., Joskowicz, L.: Deep learning automatic fetal structures segmentation in MRI scans with few annotated datasets. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 365–374. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_35

    Chapter  Google Scholar 

  10. Estrada, S., et al.: FatSegNet: a fully automated deep learning pipeline for adipose tissue segmentation on abdominal Dixon MRI. Magn. Reson. Med. 83(4), 1471–1483 (2020)

    Article  Google Scholar 

  11. Gardeil, F., Greene, R., Stuart, B., Turner, M.J.: Subcutaneous fat in the fetal abdomen as a predictor of growth restriction. Obstet. Gynecol. 94(2), 209–212 (1999)

    Google Scholar 

  12. Giza, S.A., et al.: Water-fat magnetic resonance imaging of adipose tissue compartments in the normal third trimester fetus. Pediatr. Radiol. 51(7), 1214–1222 (2021)

    Article  Google Scholar 

  13. Hu, H.H., et al.: Linearity and bias of proton density fat fraction as a quantitative imaging biomarker: a multicenter, multiplatform, multivendor phantom study. Radiology 298(3), 640 (2021)

    Article  Google Scholar 

  14. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  15. Joskowicz, L., Cohen, D., Caplan, N., Sosna, J.: Inter-observer variability of manual contour delineation of structures in CT. Eur. Radiol. 29(3), 1391–1399 (2019)

    Article  Google Scholar 

  16. Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-Net. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40

    Chapter  Google Scholar 

  17. Kway, Y.M., et al.: Automated segmentation of visceral, deep subcutaneous, and superficial subcutaneous adipose tissue volumes in MRI of neonates and young children. Radiol. Artif. Intell. 3(5) (2021)

    Google Scholar 

  18. Larciprete, G., et al.: Intrauterine growth restriction and fetal body composition. Ultrasound Obstet. Gynecol. 26(3), 258–262 (2005)

    Article  Google Scholar 

  19. Lee, W., et al.: New fetal weight estimation models using fractional limb volume. Ultrasound Obstet. Gynecol. 34(5), 556–565 (2009)

    Article  MathSciNet  Google Scholar 

  20. Lee, W., et al.: The fetal arm: individualized growth assessment in normal pregnancies. J. Ultrasound Med. 24(6), 817–828 (2005)

    Article  Google Scholar 

  21. Lin, D., et al.: Automated measurement of pancreatic fat deposition on Dixon MRI using nnU-Net. J. Magn. Reson. Imaging (2022)

    Google Scholar 

  22. Mack, L.M., Kim, S.Y., Lee, S., Sangi-Haghpeykar, H., Lee, W.: A novel semiautomated fractional limb volume tool for rapid and reproducible fetal soft tissue assessment. J. Ultrasound Med. 35(7), 1573–1578 (2016)

    Article  Google Scholar 

  23. Meshaka, R., Gaunt, T., Shelmerdine, S.C.: Artificial intelligence applied to fetal MRI: a sco** review of current research. Br. J. Radiol. 95, 20211205 (2022)

    Article  Google Scholar 

  24. Roelants, J., et al.: Foetal fractional thigh volume: an early 3D ultrasound marker of neonatal adiposity. Pediatr. Obes. 12, 65–71 (2017)

    Article  Google Scholar 

  25. Nobile de Santis, M., et al.: Growth of fetal lean mass and fetal fat mass in gestational diabetes. Ultrasound Obstet. Gynecol. 36(3), 328–337 (2010)

    Google Scholar 

  26. Shamshad, F., et al.: Transformers in medical imaging: a survey. ar**v preprint ar**v:2201.09873 (2022)

  27. Shaw, M., Lutz, T., Gordon, A.: Does low body fat percentage in neonates greater than the 5th percentile birthweight increase the risk of hypoglycaemia and neonatal morbidity? J. Paediatr. Child Health 55(12), 1424–1428 (2019)

    Article  Google Scholar 

  28. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)

    Google Scholar 

  29. Torrents-Barrena, J., et al.: Segmentation and classification in MRI and us fetal imaging: recent trends and future prospects. Med. Image Anal. 51, 61–88 (2019)

    Article  Google Scholar 

  30. Yushkevich, P.A., Gao, Y., Gerig, G.: ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: International Conference of IEEE Engineering in Medicine and Biology Society (2016)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Kamin Grants [63418, 72126] from the Israel Innovation Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Netanell Avisdris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avisdris, N. et al. (2022). Automatic Fetal Fat Quantification from MRI. In: Licandro, R., Melbourne, A., Abaci Turk, E., Macgowan, C., Hutter, J. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2022. Lecture Notes in Computer Science, vol 13575. Springer, Cham. https://doi.org/10.1007/978-3-031-17117-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17117-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17116-1

  • Online ISBN: 978-3-031-17117-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation