Weakly Supervised MR-TRUS Image Synthesis for Brachytherapy of Prostate Cancer

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13436))

  • 7167 Accesses

Abstract

Prostate magnetic resonance imaging (MRI) offers accurate details of structures and tumors for prostate cancer brachytherapy. However, it is unsuitable for routine treatment since MR images differ significantly from trans-rectal ultrasound (TRUS) images conventionally used for radioactive seed implants in brachytherapy. TRUS imaging is fast, convenient, and widely available in the operation room but is known for its low soft-tissue contrast and tumor visualization capability in the prostate area. Conventionally, practitioners usually rely on prostate segmentation to fuse the two imaging modalities with non-rigid registration. However, prostate delineation is often not available on diagnostic MR images. Besides, the high non-linear intensity relationship between two imaging modalities poses a challenge to non-rigid registration. Hence, we propose a method to generate a TRUS-styled image from a prostate MR image to replace the role of the TRUS image in radiation therapy dose pre-planning. We propose a structural constraint to handle non-linear projections of anatomical structures between MR and TRUS images. We further include an adversarial mechanism to enforce the model to preserve anatomical features in an MR image (such as prostate boundary and dominant intraprostatic lesion (DIL)) while synthesizing the TRUS-styled counterpart image. The proposed method is compared with other state-of-art methods with real TRUS images as the reference. The results demonstrate that the TRUS images synthesized by our method can be used for brachytherapy treatment planning for prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lemaître, G., Martí, R., Freixenet, J., Vilanova, J.C., Walker, P.M., Meriaudeau, F.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput. Biol. Med. 60, 8–31 (2015). https://doi.org/10.1016/j.compbiomed.2015.02.009. https://www.sciencedirect.com/science/article/pii/S001048251500058X

  2. Bloch, N., Madabhushi, A., Huisman, H., et al.: NCI-ISBI 2013 challenge: automated segmentation of prostate structures (2015)

    Google Scholar 

  3. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2006)

    Google Scholar 

  4. Chen, R., Huang, W., Huang, B., Sun, F., Fang, B.: Reusing discriminators for encoding: towards unsupervised image-to-image translation (2020)

    Google Scholar 

  5. Ghahramani, Z.: Unsupervised learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 72–112. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_5

    Chapter  MATH  Google Scholar 

  6. Goodfellow, I.J., et al.: Generative adversarial networks (2014)

    Google Scholar 

  7. Han, J., Shoeiby, M., Petersson, L., Armin, M.A.: Dual contrastive learning for unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2021)

    Google Scholar 

  8. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: ECCV (2018)

    Google Scholar 

  9. Jiao, J., Namburete, A.I.L., Papageorghiou, A.T., Noble, J.A.: Self-supervised ultrasound to MRI fetal brain image synthesis (2020)

    Google Scholar 

  10. Kang, T., Lee, K.H.: Unsupervised image-to-image translation with self-attention networks. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), February 2020. https://doi.org/10.1109/bigcomp48618.2020.00-92

  11. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the Sobel operator. IEEE J. Solid-State Circuits 23(2), 358–367 (1988)

    Article  Google Scholar 

  12. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M.K., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: European Conference on Computer Vision (2018)

    Google Scholar 

  13. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks (2018)

    Google Scholar 

  14. Ma, Z., Collins, M.: Noise contrastive estimation and negative sampling for conditional models: consistency and statistical efficiency (2018). https://doi.org/10.48550/ARXIV.1809.01812. https://arxiv.org/abs/1809.01812

  15. Modat, M., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98, 278–84 (2009). https://doi.org/10.1016/j.cmpb.2009.09.002

    Article  Google Scholar 

  16. Morris, W., et al.: Population-based study of biochemical and survival outcomes after permanent 125I brachytherapy for low- and intermediate-risk prostate cancer. Urology 73(4), 860–865 (2009). https://doi.org/10.1016/j.urology.2008.07.064

    Article  Google Scholar 

  17. Onofrey, J.A., Oksuz, I., Sarkar, S., Venkataraman, R., Staib, L.H., Papademetris, X.: MRI-TRUS image synthesis with application to image-guided prostate intervention. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2016. LNCS, vol. 9968, pp. 157–166. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46630-9_16

    Chapter  Google Scholar 

  18. Prada, P., et al.: Long-term outcomes in patients younger than 60 years of age treated with brachytherapy for prostate cancer. Strahlentherapie und Onkologie 194, 311–317 (2018). https://doi.org/10.1007/s00066-017-1238-2

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015)

    Google Scholar 

  20. **e, G., Wang, J., Huang, Y., Zheng, Y., Zheng, F., **, Y.: A survey of cross-modality brain image synthesis (2022)

    Google Scholar 

  21. Yang, H., et al.: Unsupervised MR-to-CT synthesis using structure-constrained CycleGAN. IEEE Trans. Med. Imaging 39(12), 4249–4261 (2020). https://doi.org/10.1109/TMI.2020.3015379

    Article  Google Scholar 

  22. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grant CA206100. Yunzhi Huang was in part supported by the National Natural Science Foundation of China under Grant No. 62101365 and the startup foundation of Nan**g University of Information Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lian .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 132 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pang, Y., Chen, X., Huang, Y., Yap, PT., Lian, J. (2022). Weakly Supervised MR-TRUS Image Synthesis for Brachytherapy of Prostate Cancer. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation