Learning Towards Synchronous Network Memorizability and Generalizability for Continual Segmentation Across Multiple Sites

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

In clinical practice, a segmentation network is often required to continually learn on a sequential data stream from multiple sites rather than a consolidated set, due to the storage cost and privacy restriction. However, during the continual learning process, existing methods are usually restricted in either network memorizability on previous sites or generalizability on unseen sites. This paper aims to tackle the challenging problem of Synchronous Memorizability and Generalizability (SMG) and to simultaneously improve performance on both previous and unseen sites, with a novel proposed SMG-learning framework. First, we propose a Synchronous Gradient Alignment (SGA) objective, which not only promotes the network memorizability by enforcing coordinated optimization for a small exemplar set from previous sites (called replay buffer), but also enhances the generalizability by facilitating site-invariance under simulated domain shift. Second, to simplify the optimization of SGA objective, we design a Dual-Meta algorithm that approximates the SGA objective as dual meta-objectives for optimization without expensive computation overhead. Third, for efficient rehearsal, we configure the replay buffer comprehensively considering additional inter-site diversity to reduce redundancy. Experiments on prostate MRI data sequentially acquired from six institutes demonstrate that our method can simultaneously achieve higher memorizability and generalizability over state-of-the-art methods. Code is available at https://github.com/**gyzhang/SMG-Learning.

J. Zhang and P. Xue—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Orientational alignment seems a special case of arbitrary alignment when the subset splitting is \(\mathcal {C}_{tr}=\mathcal {D}_{t}\) and \(\mathcal {C}_{te}=\mathcal {P}\), coincidently. However, orientational alignment cannot be omitted with a risk of suffering from potential interference [22], as empirically shown in Appendix A, due to arbitrary alignment for other subset splittings.

References

  1. Bloch, N., et al.: NCI-ISBI 2013 challenge: automated segmentation of prostate structures. Cancer Imaging Arch. (2015)

    Google Scholar 

  2. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Proceedings of the European conference on computer vision (ECCV), pp. 233–248 (2018)

    Google Scholar 

  3. Chen, C., Dou, Q., Chen, H., Heng, P.-A.: Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest X-ray segmentation. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 143–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_17

    Chapter  Google Scholar 

  4. Delange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Analy. Mach. Intell. (2021)

    Google Scholar 

  5. Dhruva, S.S., et al.: Aggregating multiple real-world data sources using a patient-centered health-data-sharing platform. NPJ Digit. Med. 3(1), 1–9 (2020)

    Article  Google Scholar 

  6. Dou, Q., Coelho de Castro, D., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. Adv. Neural Inf. Process. Syst. 32, 6450–6461 (2019)

    Google Scholar 

  7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  8. Ganin, Y.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  9. Gupta, G., Yadav, K., Paull, L.: La-MAML: look-ahead meta learning for continual learning. ar**v preprint ar**v:2007.13904 (2020)

  10. Koh, P.W., et al.: Wilds: A benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning, pp. 5637–5664. PMLR (2021)

    Google Scholar 

  11. Lemaître, G., et al.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Comput. Biol. Med. 60, 8–31 (2015)

    Article  Google Scholar 

  12. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: meta-learning for domain generalization. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  13. Li, Z., Zhong, C., Wang, R., Zheng, W.-S.: Continual learning of new diseases with dual distillation and ensemble strategy. In: Martel, M.A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 169–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_17

    Chapter  Google Scholar 

  14. Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med. Image Anal. 18(2), 359–373 (2014)

    Article  Google Scholar 

  15. Liu, Q., Dou, Q., Yu, L., Heng, P.A.: MS-Net: Multi-site network for improving prostate segmentation with heterogeneous MRI data. IEEE Trans. Med. Imag. 39(9), 2713–2724 (2020)

    Article  Google Scholar 

  16. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013–1023 (2021)

    Google Scholar 

  17. Liu, Q., Dou, Q., Heng, P.-A.: Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 475–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_46

    Chapter  Google Scholar 

  18. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems, pp. 6467–6476 (2017)

    Google Scholar 

  19. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier, San Diego (1989)

    Google Scholar 

  20. Nie, D., Wang, L., Adeli, E., Lao, C., Lin, W., Shen, D.: 3-d fully convolutional networks for multimodal isointense infant brain image segmentation. IEEE Trans. Cybernet. 49(3), 1123–1136 (2018)

    Article  Google Scholar 

  21. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: Incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  22. Riemer, M., et al.: Learning to learn without forgetting by maximizing transfer and minimizing interference. ar**v preprint ar**v:1810.11910 (2018)

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. ar**v preprint ar**v:1708.00489 (2017)

  25. Shi, Y., et al.: Gradient matching for domain generalization. ar**v preprint ar**v:2104.09937 (2021)

  26. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2591–2600 (2016)

    Article  Google Scholar 

  27. **ang, L., Wang, Q., Nie, D., Zhang, L., **, X., Qiao, Y., Shen, D.: Deep embedding convolutional neural network for synthesizing CT image from T1-weighted MR image. Med. Image Anal. 47, 31–44 (2018)

    Article  Google Scholar 

  28. Zhang, J., Gu, R., Wang, G., Gu, L.: Comprehensive importance-based selective regularization for continual segmentation across multiple sites. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 389–399. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_37

    Chapter  Google Scholar 

  29. Zhang, I., et al.: Weakly supervised vessel segmentation in x-ray angiograms by self-paced learning from noisy labels with suggestive annotation. Neurocomputing 417, 114–127 (2020)

    Article  Google Scholar 

  30. Zhou, K., Liu, Z., Qiao, Y., **ang, T., Loy, C.C.: Domain generalization: a survey. ar**v preprint ar**v:2103.02503 (2021)

Download references

Acknowledgement

This work was supported in part by National Natural Science Foundation of China (grant number 62131015), and Science and Technology Commission of Shanghai Municipality (STCSM) (grant number 21010502600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 367 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J. et al. (2022). Learning Towards Synchronous Network Memorizability and Generalizability for Continual Segmentation Across Multiple Sites. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation