The Flexible and Wearable Pressure Sensing Microsystems for Medical Diagnostics

  • Chapter
  • First Online:
Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine
  • 518 Accesses

Abstract

The flexible wearable pressure sensor has the unique advantages of being lightweight and low cost and having good flexibility, and it has received extensive attention as a result of its great application potential for realizing real-time health monitoring. In this review, we summarize some common substrate materials and active materials used in the fabrication of sensors and introduce sensing mechanisms, including piezoresistivity, capacitance, piezoelectricity, and triboelectricity. Moreover, we present some improvement directions for the sensor’s key property of sensitivity, by choosing better active materials or finding suitable microstructure, and we also introduce sensor’s property of power consumption, sensing range, response time, linearity, hysteresis, etc. In addition, we also have mentioned some applications of flexible pressure sensors in medical diagnostic (such as heart rate, pulse, intracranial pressure, intraocular pressure, speech recognition, gait monitoring, blood pressure, tactile monitoring, etc.) in recent years. Finally, we present the challenges that wearable sensors are facing and predict the development of sensors that will be expected to be systematic, integrated, and multifunctional in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 179.34
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn S, Cho Y, Park S, Kim J, Sun J, Ahn D, Lee M, Kim D, Kim T, Shin H, Park J-J. Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals [J]. Nano Energy. 2020;74:104932.

    Article  CAS  Google Scholar 

  • Ai Y, Hsu TH, Wu DC, Lee L, Chen J-H, Chen Y-Z, Wu S-C, Wu C, Wang ZM, Chueh Y-L. An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@reduced graphene-oxide core–shell nanoparticles [J]. J Mater Chem C. 2018;6(20):5514–20.

    Article  CAS  Google Scholar 

  • Bi P, Liu X, Yang Y, Wang Z, Shi J, Liu G, Kong F, Zhu B, **ong R. Silver-nanoparticle-modified polyimide for multiple artificial skin-sensing applications [J]. Adv Mater Technol. 2019;4:1900426.

    Article  CAS  Google Scholar 

  • Boutry CM, Wang Z, Chang J, Kaizawa Y, Schroeder BC, Fox P, Bao Z. A stretchable and biodegradable strain and pressure sensor for orthopaedic application [J]. Nat Electron. 2018;1(5):314–21.

    Article  Google Scholar 

  • Cai G, Yang M, Zhenglin X, Liu J, Tang B, Wang X. Flexible and wearable strain sensing fabrics [J]. Chem Eng J. 2017;325:396–403.

    Article  CAS  Google Scholar 

  • Cai Y, Shen J, Ge G, Zhang Y, ** W, Huang W, Shao J, Yang J, Dong X. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range [J]. ACS Nano. 2018;12(1):56–62.

    Article  CAS  Google Scholar 

  • Chen Z, Wang Z, Li X, Lin Y, Luo N, Long M, Zhao N, Jian-Bin X. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures [J]. ACS Nano. 2017;11(5):4507–13.

    Article  CAS  Google Scholar 

  • Chen J, Zheng J, Gao Q, Zhang J, Zhang J, Omisore OM, Wang L, Li H. Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications [J]. Appl Sci. 2018;8(3):345.

    Article  Google Scholar 

  • Chen J, Zhang J, Luo Z, Zhang J, Li L, Yi S, Gao X, Li Y, Tang W, Cao C, Liu Q, Wang L, Li H. Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring [J]. ACS Appl Mater Interfaces. 2020a;12(19):22200–11.

    Article  CAS  Google Scholar 

  • Chen S, Nan W, Lin S, Duan J, Zisheng X, Pan Y, Zhang H, Zheheng X, Huang L, Bin H, Zhou J. Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics [J]. Nano Energy. 2020b;70:104460.

    Article  CAS  Google Scholar 

  • Cheng Y, Ma Y, Li L, Zhu M, Yue Y, Liu W, Wang L, Jia S, Li C, Qi T, Wang J, Gao Y. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor [J]. ACS Nano. 2020;14(2):2145–55.

    Article  CAS  Google Scholar 

  • Chu Y, Zhong J, Liu H, Ma Y, Nathaniel Liu Y, Song JL, Zhichun Shao Y, Sun YD, Wang X, Lin L. Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system [J]. Adv Funct Mater. 2018;28(40):1803413.

    Article  Google Scholar 

  • Chung H, Kim BH, Lee JY, Lee J, **e Z, Ibler EM, Lee KH, Banks A, Jeong JY, Kim J, Ogle C, Grande D, Yu Y, Jang H, Assem P, Ryu D, Kwak JW, Namkoong M, Park JB, Lee Y, Kim DH, Ryu A, Jeong J, You K, Ji B, Liu Z, Huo Q, Feng X, Deng Y, Xu Y, Jang K-I, Kim J, Zhang Y, Ghaffari R, Rand CM, Schau M, Hamvas A, Weese-Mayer DE, Huang Y, Lee SM, Lee CH, Shanbhag NR, Paller AS, Xu S, Rogers JA. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care [J]. Science. 2019;363(6430):eaau0780.

    Article  CAS  Google Scholar 

  • Cui Z, Poblete F, Zhu Y. Tailoring the temperature coefficient of resistance of silver nanowire nanocomposites and their application as stretchable temperature sensors [J]. ACS Appl Mater Interfaces. 2019;11(19):17836–42.

    Article  CAS  Google Scholar 

  • Ding Y, Xu T, Onyilagha O, et al. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges [J]. ACS Appl Mater Interfaces. 2019;11(7):6685–704.

    Article  CAS  Google Scholar 

  • Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence [J]. Adv Mater. 2020;32(5):e1902549.

    Article  Google Scholar 

  • Fan X, Huang Y, Ding X, Luo N, Li C, Zhao N, Chen S-C. Alignment-free liquid-capsule pressure sensor for cardiovascular monitoring [J]. Adv Funct Mater. 2018;28(44):1805045.

    Article  Google Scholar 

  • Fan S, Meng L, Dan L, Zheng W, Wang X. Polymer microelectromechanical system-integrated flexible sensors for wearable technologies [J]. IEEE Sensors J. 2019;19(2):443–50.

    Article  CAS  Google Scholar 

  • Gao J, Li B, Huang X, Wang L, Lin L, Wang H, Xue H. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring [J]. Chem Eng J. 2019a;373:298–306.

    Article  CAS  Google Scholar 

  • Gao L, Zhu C, Li L, Zhang C, Liu J, Hai-Dong Y, Huang W. All paper-based flexible and wearable piezoresistive pressure sensor [J]. ACS Appl Mater Interfaces. 2019b;11(28):25034–42.

    Article  CAS  Google Scholar 

  • Gao J, Wanga L, Guoa Z, Lia B, Wanga H, Luoa J, Huanga X, Xue H. Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications [J]. Chem Eng J. 2020;2:122778.

    Article  Google Scholar 

  • Ghosh R, Song MS, Park JB, Tchoe Y, Guha P, Lee W, Lim Y, Kim B, Kim S-W, Kim M, Yi G-C. Fabrication of piezoresistive Si nanorod-based pressure sensor arrays: a promising candidate for portable breath monitoring devices [J]. Nano Energy. 2021;80:105537.

    Article  CAS  Google Scholar 

  • Gong H, Cai C, Hongjun G, Jiang Q, Zhang D, Cheng Z. Flexible and wearable strain sensor based on electrospun carbon sponge/polydimethylsiloxane composite for human motion detection [J]. RSC Adv. 2021;11(7):4186–93.

    Article  CAS  Google Scholar 

  • He Z, Zhou G, Byun J-H, Lee S-K, Um M-K, Park B, Kim T, Lee SB, Chou T-W. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors [J]. Nanoscale. 2019a;11(13):5884–90.

    Article  CAS  Google Scholar 

  • He J, **ao P, Wei L, Shi J, Zhang L, Liang Y, Pan C, Kuo S-W, Chen T. A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor [J]. Nano Energy. 2019b;59:422–33.

    Article  CAS  Google Scholar 

  • He F, You X, Gong H, Yang Y, Bai T, Wang W, Guo W, Liu X, Ye M. Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators [J]. ACS Appl Mater Interfaces. 2020;12(5):6442–50.

    Article  CAS  Google Scholar 

  • Hosseini ES, Manjakkal L, Shakthivel D, Dahiya R. Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor [J]. ACS Appl Mater Interfaces. 2020;12(8):9008–16.

    Article  CAS  Google Scholar 

  • Hwang J, Kim Y, Yang H, Oh JH. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor [J]. Compos Part B Eng. 2021;4:108607.

    Article  Google Scholar 

  • Jayathilaka WADM, Qi K, Qin Y, Chinnappan A, Serrano-García W, Baskar C, Wang H, He J, Cui S, Thomas SW, Ramakrishna S. Significance of nanomaterials in wearables: a review on wearable actuators and sensors [J]. Adv Mater. 2019;31(7):e1805921.

    Article  Google Scholar 

  • Jeon S, Lim S-C, Trung TQ, Jung M, Lee N-E. Flexible multimodal sensors for electronic skin: principle, materials, device, array architecture, and data acquisition method [J]. Proc IEEE Inst Electr Electron Eng. 2019;107(10):2065–83.

    Article  CAS  Google Scholar 

  • Jiang C, Cheng X, Nathan A. Flexible ultralow-power sensor interfaces for E-skin [J]. Proc IEEE Inst Electr Electron Eng. 2019a;107(10):2084–105.

    Article  CAS  Google Scholar 

  • Jiang S, Jiangtao Y, **ao Y, Zhu Y, Zhang W. Ultrawide sensing range and highly sensitive flexible pressure sensor based on a percolative thin film with a knoll-like microstructured surface [J]. ACS Appl Mater Interfaces. 2019b;11(22):20500–8.

    Article  CAS  Google Scholar 

  • Kaichen X, Yuyao L, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics [J]. Adv Mater Technol. 2019;4:1800628.

    Article  Google Scholar 

  • Kaisti M, Panula T, Leppänen J, Punkkinen R, Tadi MJ, Vasankari T, Jaakkola S, Kiviniemi T, Airaksinen J, Kostiainen P, Meriheinä U, Koivisto T, Pänkäälä M. Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation [J]. NPJ Digit Med. 2019;2:39.

    Article  Google Scholar 

  • Kang B-C, Park S-J, Ha T-J. Wearable pressure/touch sensors based on hybrid dielectric composites of zinc oxide nanowires/poly(dimethylsiloxane) and flexible electrodes of immobilized carbon nanotube random networks [J]. ACS Appl Mater Interfaces. 2021;13(35):42014–23.

    Article  CAS  Google Scholar 

  • Karmakar RS, Wang J-C, Huang Y-T, Lin K-J, Wei K-C, Hsu Y-H, Huang Y-C, Lu Y-J. Real-time intraoperative pressure monitoring to avoid surgically induced localized brain injury using a miniaturized piezoresistive pressure sensor [J]. ACS Omega. 2020;5(45):29342–50.

    Article  CAS  Google Scholar 

  • Kim J, Chou E-F, Le J, Wong S, Chu M, Khine M. Soft wearable pressure sensors for beat-to-beat blood pressure monitoring [J]. Adv Healthc Mater. 2019a;8(13):e1900109.

    Article  Google Scholar 

  • Kim S, Amjadi M, Lee T-I, Jeong Y, Kwon D, Kim MS, Kim K, Kim T-S, Yong Suk O, Park I. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices [J]. ACS Appl Mater Interfaces. 2019b;11(26):23639–48.

    Article  CAS  Google Scholar 

  • Kim J, Kim J, Minjae K, Cha E, Seoyoung J, Park WY, Kim KH, Kim DW, Berggren P-O, Park J-U. Intraocular pressure monitoring following islet transplantation to the anterior chamber of the eye [J]. Nano Lett. 2019c;20(3):1517–25.

    Article  Google Scholar 

  • Kwak YH, Kima W, Parka KB, Kima K, Seo S. Flexible heartbeat sensor for wearable device [J]. Biosens Bioelectron. 2017;94:250–5.

    Article  CAS  Google Scholar 

  • Lamanna L, Rizzi F, Guido F, Algieri L, Marras S, Mastronardi VM, Qualtieri A, De Vittorio M. Flexible and transparent aluminum-nitride-based surface-acoustic-wave device on polymeric polyethylene naphthalate [J]. Adv Electron Mater. 2019;5:1900095.

    Article  Google Scholar 

  • Lee K, Lee J, Kim G, Kim Y, Kang S, Cho S, Kim SG, Kim J-K, Lee W, Kim D-E, Kang S, Kim DE, Lee T, Shim W. Rough-surface-enabled capacitive pressure sensors with 3D touch capability [J]. Small. 2017;13(43) https://doi.org/10.1002/smll.201700368.

  • Lee Y, Kim J, Jang B, Kim S, Sharma BK, Kim J-H, Ahn J-H. Graphene-based stretchable/wearable self-powered touch sensor [J]. Nano Energy. 2019;62:259–67.

    Article  CAS  Google Scholar 

  • Lee S, Bristol RE, Preul MC, Chae J. Three-dimensionally printed microelectromechanical-system hydrogel valve for communicating hydrocephalus [J]. ACS Sens. 2020;5(5):1398–404.

    Article  CAS  Google Scholar 

  • Lei H, **ao J, Chen Y, Jiang J, Renjie X, Wen Z, Dong B, Sun X. Bamboo-inspired self-powered triboelectric sensor for touch sensing and sitting posture monitoring [J]. Nano Energy. 2022;91:106670.

    Article  CAS  Google Scholar 

  • Li Y-Q, Huang P, Zhu W-B, Shao-Yun F, Ning H, Liao K. Flexible wire-shaped strain sensor from cotton thread for human health and motion detection [J]. Sci Rep. 2017a;7:45013.

    Article  CAS  Google Scholar 

  • Li T, Zou J, **ng F, Zhang M, Cao X, Wang N, Wang ZL. From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design [J]. ACS Nano. 2017b;11(4):3950–6.

    Article  CAS  Google Scholar 

  • Li H, Han C, Huang Y, Huang Y, Zhu M, Pei Z, Xue Q, Wang Z, Liu Z, Tang Z, Wang Y, Kang F, Li B, Zhi C. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte [J]. Energy Environ Sci. 2018;11(4):941–51.

    Article  CAS  Google Scholar 

  • Li W, **ong L, Yueming P, Quan Y, Li S. High-performance paper-based capacitive flexible pressure sensor and its application in human-related measurement [J]. Nanoscale Res Lett. 2019a;14(1):183.

    Article  Google Scholar 

  • Li Z, Li HY, Fan Y, Lu L, Chen YH, Zhang C, Zhu G. Small-sized, lightweight, and flexible triboelectric nanogenerator enhanced by PTFE/PDMS nanocomposite electret [J]. ACS Appl Mater Interfaces. 2019b;11(22):20370–7.

    Article  CAS  Google Scholar 

  • Li L, Zheng J, Chen J, Luo Z, Yi S, Tang W, Gao X, Li Y, Cao C, Liu Q, Kang X, Wang L, Li H. Flexible pressure sensors for biomedical applications: from ex vivo to in vivo [J]. Adv Mater Interfaces. 2020a;7:2000743.

    Article  Google Scholar 

  • Li X, Fan YJ, Li HY, Cao JW, **ao YC, Wang Y, Liang F, Wang HL, Yang J, Wang ZL, Zhu G. Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor [J]. ACS Nano. 2020b;14(8):9605–12.

    Article  CAS  Google Scholar 

  • Li M, Liang J, Wang X, Zhang M. Ultra-sensitive flexible pressure sensor based on microstructured electrode [J]. Sensors. 2020c;20(2):371.

    Article  Google Scholar 

  • Li H, Chen J, Chang X, Youquan X, Zhao G, Zhu Y, Li Y. A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range [J]. J Mater Chem A. 2021;9(3):1795–802.

    Article  CAS  Google Scholar 

  • Liang C, Ruan K, Zhang Y, Junwei G. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances [J]. ACS Appl Mater Interfaces. 2020;12(15):18023–31.

    Article  CAS  Google Scholar 

  • Lin S, Cheng Y, Mo X, Chen S, Zisheng X, Zhou B, Zhou H, Bin H, Zhou J. Electrospun polytetrafluoroethylene nanofibrous membrane for high-performance self-powered sensors [J]. Nanoscale Res Lett. 2019;14(1):251.

    Article  Google Scholar 

  • Lin W, Wang B, Peng G, Shan Y, Hong H, Yang Z. Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+column electrodes for spatiotemporally distinguishing diverse stimuli [J]. Adv Sci. 2021;8(3):2002817.

    Article  CAS  Google Scholar 

  • Liu W, Huang Y, Peng Y, Walczak MS, Dong W, Chen Q, Zhu L, Li L. Stable wearable strain sensors on textiles by direct laser writing of graphene [J]. ACS Appl Nano Mater. 2020;3(1):283–93.

    Article  CAS  Google Scholar 

  • Ma Z, Wei A, Ma J, Shao L, Jiang H, Dong D, Ji Z, Wang Q, Kang S. Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors [J]. Nanoscale. 2018;10(15):7116–26.

    Article  CAS  Google Scholar 

  • Mahanty B, Ghosh SK, Garain S, Mandal D. An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer [J]. Mater Chem Phys. 2017;186:327–32.

    Article  CAS  Google Scholar 

  • Mao Y, Ji B, Chen G, Hao C, Zhou B, Tian Y. Robust and wearable pressure sensor assembled from AgNW-coated PDMS micropillar sheets with high sensitivity and wide detection range [J]. ACS Appl Nano Mater. 2019;2(5):3196–205.

    Article  CAS  Google Scholar 

  • Meng K, Chen J, Li X, Wu Y, Fan W, Zhou Z, He Q, Xue W, Fan X, Zhang Y, Yang J, Wang ZL. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure [J]. Adv Funct Mater. 2019;29:1806388.

    Google Scholar 

  • Mengdi X, Gao Y, Guohui Y, Cong L, Tan J, Xuan F. Flexible pressure sensor using carbon nanotube-wrapped polydimethylsiloxane microspheres for tactile sensing [J]. Sens Actuator A Phys. 2018;284:260–5.

    Article  Google Scholar 

  • Mengting X, Cai H, Liu Z, Chen F, Chen L, Chen X, Cheng X, Dai F, Li Z. Breathable, degradable piezoresistive skin sensor based on a sandwich structure for high-performance pressure detection [J]. Adv Electron Mater. 2021;7(10):2100368.

    Article  Google Scholar 

  • Ning C, Dong K, Cheng R, Yi J, Ye C, Peng X, Sheng F, Yang J, Wang ZL. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing [J]. Adv Funct Mater. 2020;31(4):2006679.

    Article  Google Scholar 

  • Ouyang H, Tian J, Sun G, Yang Z, Liu Z, Hu L, Zhao L, Shi B, Fan Y, Fan Y, Wang ZL, Li Z. Self-powered pulse sensor for antidiastole of cardiovascular disease [J]. Adv Mater. 2017;29(40):1703456.

    Article  Google Scholar 

  • Pang Y, Wang D, Jian M, Zhang Y, Liang R, Tian H, Yang Y, Ren T-L. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity [J]. ACS Nano. 2018;12(3):2346–54.

    Article  CAS  Google Scholar 

  • Park DY, Joe DJ, Kim DH, Park H, Han JH, Jeong CK, Park H, Park JG, Joung B, Lee KJ. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors [J]. Adv Mater. 2017;29:1702308.

    Article  Google Scholar 

  • Park J, Kim J, Hong J, Lee H, Lee Y, Cho S, Kim S-W, Kim JJ, Kim SY, Ko H. Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins [J]. NPG Asia Mater. 2018a;10(4):163–76.

    Article  CAS  Google Scholar 

  • Park SW, Das PS, Park JY. Development of wearable and flexible insole type capacitive pressure sensor for continuous gait signal analysis [J]. Org Electron. 2018b;53:213–20.

    Article  CAS  Google Scholar 

  • Peng Y, Que M, Leed HE, Bao R, Wang X, Lu J, Yuan Z, Li X, Tao J, Sun J, Zhai J, Leed KJ, Pan C. Achieving high-resolution pressure map** via flexible GaN/ZnO nanowire LEDs array by piezo-phototronic effect [J]. Nano Energy. 2019;58:633–40.

    Article  CAS  Google Scholar 

  • Qi W, Qiao Y, Guo R, Naveed S, Hirtz T, Li X, Yixin F, Wei Y, Deng G, Yang Y, **aoming W, Ren T-L. Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring [J]. ACS Nano. 2020;14(8):10104–14.

    Article  Google Scholar 

  • Qin Z, Sun X, Qingyu Y, Zhang H, **aojun W, Yao M, Liu W, Yao F, Li J. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors [J]. ACS Appl Mater Interfaces. 2020;12(4):4944–53.

    Article  CAS  Google Scholar 

  • Qiu Z, Wan Y, Zhou W, Yang J, Yang J, Huang J, Zhang J, Liu Q, Huang S, Bai N, Wu Z, Hong W, Wang H, Guo CF. Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf [J]. Adv Funct Mater. 2018;28(37):1802343.

    Article  Google Scholar 

  • Rajitha G, Dash RK. Optically transparent and high dielectric constant reduced graphene oxide (RGO)-PDMS based flexible composite for wearable and flexible sensors [J]. Sens Actuator A Phys. 2018;277:26–34.

    Article  CAS  Google Scholar 

  • Ray TR, Choi J, Bandodkar AJ, Krishnan S, Gutruf P, Tian L, Ghaffari R, Rogers JA. Bio-integrated wearable systems: a comprehensive review [J]. Chem Rev. 2019;119(8):5461–533.

    Article  CAS  Google Scholar 

  • Rui FENG, Tang F, Zhang N, Wang X. Flexible, high-power density, wearable thermoelectric nanogenerator and self-powered temperature sensor [J]. ACS Appl Mater Interfaces. 2019;11(42):38616–24.

    Article  Google Scholar 

  • Savariraj AD, Salih A, Alam F, Elsherif M, AlQattan B, Khan AA, Yetisen AK, Butt H. Ophthalmic sensors and drug delivery [J]. ACS Sens. 2021;6(6):2046–76.

    Article  Google Scholar 

  • Schüssler-Fiorenza Rose SM, Contrepois K, Moneghetti KJ, Zhou W, Mishra T, Mataraso S, Dagan Rosenfeld O, Ganz AB, Dunn J, Hornburg D, Rego S, Perelman D, Ahadi S, Sailani MR, Zhou Y, Leopold SR, Chen J, Ashland M, Christle JW, Avina M, Limcaoco P, Ruiz C, Tan M, Butte AJ, Weinstock GM, Slavich GM, Sodergren E, McLaughlin TL, Haddad F, Snyder MP. A longitudinal big data approach for precision health [J]. Nat Med. 2019;25(5):792–804.

    Article  Google Scholar 

  • Seyedin S, Uzun S, Levitt A, Anasori B, Dion G, Gogotsi Y, Razal JM. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles [J]. Adv Funct Mater. 2020;3:1910504.

    Article  Google Scholar 

  • Shi R, Lou Z, Chen S, Shen G. Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application [J]. Sci China Mater. 2018;61(12):1587–95.

    Article  CAS  Google Scholar 

  • Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen J, Chen W, Chai Y, Tao X. Smart textile-integrated microelectronic systems for wearable applications [J]. Adv Mater. 2020a;32(5):e1901958.

    Article  Google Scholar 

  • Shi Q, Dong B, He T, Sun Z, Zhu J, Zhang Z, Lee C. Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things [J]. InfoMat. 2020b;2:1131–62.

    Article  Google Scholar 

  • Shin K-Y, Lee JS, Jang J. Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring [J]. Nano Energy. 2016;22:95–104.

    Article  CAS  Google Scholar 

  • Shin J, Yan Y, Bai W, Xue Y, Gamble P, Tian L, Kandela I, Haney CR, Spees W, Lee Y, Choi M, Ko J, Ryu H, Chang J-K, Pezhouh M, Kang S-K, Won SM, Yu KJ, Zhao J, Lee YK, MacEwan MR, Song S-K, Huang Y, Ray WZ, Rogers JA. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes [J]. Nat Biomed Eng. 2019;3(1):37–46.

    Article  CAS  Google Scholar 

  • Shuaidi Zhang H, Liu SY, Shi X, Zhang D, Shan C, Mi L, Liu C, Shen C, Guo Z. Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer [J]. ACS Appl Mater Interfaces. 2019;11(11):10922–32.

    Article  Google Scholar 

  • Song Z, Weiyan Li Y, Bao WW, Liu Z, Han F, Han D, Niu L. Bioinspired microstructured pressure sensor based on a Janus graphene film for monitoring vital signs and cardiovascular assessment [J]. Adv Electron Mater. 2018;4:1800252.

    Article  Google Scholar 

  • Sundaram S, Kellnhofer P, Li Y, Zhu J-Y, Torralba A, Matusik W. Learning the signatures of the human grasp using a scalable tactile glove [J]. Nature. 2019;569(7758):698–702.

    Article  CAS  Google Scholar 

  • Tan Y, Liu X, Tang W, Chen J, Zhu Z, Li L, Zhou N, Kang X, Dongliang X, Wang L, Wang G, Tan H, Li H. Flexible pressure sensors based on bionic microstructures: from plants to animals [J]. Adv Mater Interfaces. 2022;9:2101312.

    Article  Google Scholar 

  • Tang X, Wu C, Lin G, Zhang T, Zhou T, Huang J, Wang H, **e C, Zeng D. Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins [J]. Small. 2019;15(10):e1804559.

    Article  Google Scholar 

  • Tang G, Shi Q, Zhang Z, He T, Sun Z, Lee C. Hybridized wearable patch as a multi-parameter and multi-functional human-machine interface [J]. Nano Energy. 2021;81:105582.

    Article  CAS  Google Scholar 

  • Tao L-Q, Tian H, Liu Y, Zhen-Yi J, Pang Y, Chen Y-Q, Wang D-Y, Tian X-G, Yan J-C, Deng N-Q, Yang Y, Ren T-L. An intelligent artificial throat with sound-sensing ability based on laser induced graphene [J]. NatCommun. 2017;8:14579.

    CAS  Google Scholar 

  • Wan Y, Wang Y, Guo CF. Recent progresses on flexible tactile sensors [J]. Mater Today Phys. 2017;1:61–73.

    Article  Google Scholar 

  • Wan C, Chen G, Yangming F, Wang M, Matsuhisa N, Pan S, Pan L, Yang H, Wan Q, Zhu L, Chen X. An artificial sensory neuron with tactile perceptual learning [J]. Adv Mater. 2018;30(30):e1801291.

    Article  Google Scholar 

  • Wang ZL. Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution [J]. Adv Energy Mater. 2020;10:2000137.

    Article  CAS  Google Scholar 

  • Wang Z, Wang S, Zeng J, Ren X, Chee AJY, Yiu BYS, Chung WC, Yang Y, Yu ACH, Roberts RC, Tsang ACO, Chow KW, Chan PKL. High sensitivity, wearable, piezoresistive pressure sensors based on irregular microhump structures and its applications in body motion sensing [J]. Small. 2016;12(28):3827–36.

    Article  CAS  Google Scholar 

  • Wang X, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring [J]. Small. 2017;13:1602790.

    Article  Google Scholar 

  • Wang J, Jeevarathinam AS, Jhunjhunwala A, Ren H, Lemaster J, Luo Y, Fenning DP, Fullerton EE, Jokerst JV. A wearable colorimetric dosimeter to monitor sunlight exposure [J]. Adv Mater Technol. 2018a;2018:1800037.

    Article  Google Scholar 

  • Wang Z, Zhang L, Liu J, Jiang H, Li C. Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method [J]. Nanoscale. 2018b;10(22):10691–8.

    Article  CAS  Google Scholar 

  • Wang J-C, Karmakar RS, Lu Y-J, Chan S-H, Wu M-C, Lin K-J, Chen C-K, Wei K-C, Hsu Y-H. Miniaturized flexible piezoresistive pressure sensors: poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) copolymers blended with graphene oxide for biomedical applications [J]. ACS Appl Mater Interfaces. 2019a;11(37):34305–15.

    Article  CAS  Google Scholar 

  • Wang K, Lou Z, Wang L, Zhao L, Zhao S, Wang D, Han W, Jiang K, Shen G. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors [J]. ACS Nano. 2019b;13(8):9139–47.

    Article  CAS  Google Scholar 

  • Wang L, Chen Y, Lin L, Wang H, Huang X, Xue H, Gao J. Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite [J]. Chem Eng J. 2019c;362:89–98.

    Article  CAS  Google Scholar 

  • Wang J, Jiang J, Zhang C, Sun M, Han S, Zhang R, Liang N, Sun D, Liu H. Energy-efficient, fully flexible, high-performance tactile sensor based on piezotronic effect: piezoelectric signal amplified with organic field-effect transistors [J]. Nano Energy. 2020;76(18):105050.

    Article  CAS  Google Scholar 

  • **a K, Wang C, Jian M, Wang Q, Zhang Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor [J]. Nano Res. 2017;11(2):1124–34.

    Article  Google Scholar 

  • **a S-Y, Long Y, Huang Z, Zi Y, Tao L-Q, Li C-H, Sun H, Li J. Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator towards high-performance self-powered measurement-control combined system [J]. Nano Energy. 2022;96:107099.

    Article  CAS  Google Scholar 

  • **anzhang W, Hou K, Huang J, Wang J, Yang S. Graphene-based cellular materials with extremely low density and high pressure sensitivity based on self-assembled graphene oxide liquid crystals [J]. J Mater Chem C. 2018;6(32):8717–25.

    Article  Google Scholar 

  • **aohe H, Jiang Y, Ma Z, He Q, He Y, Zhou T, Zhang D. Highly sensitive P(VDF-TrFE)/BTO nanofiber-based pressure sensor with dense stress concentration microstructures [J]. ACS Appl Polym Mater. 2020;2(11):4399–404.

    Article  Google Scholar 

  • **aoyu Chen H, Liu YZ, Zhai Y, Liu X, Liu C, Mi L, Guo Z, Shen C. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor [J]. ACS Appl Mater Interfaces. 2019;11(45):42594–606.

    Article  Google Scholar 

  • **ong Y, Shen Y, Tian L, Yougen H, Zhu P, Sun R, Wong C-P. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring [J]. Nano Energy. 2020;2020:104436.

    Article  Google Scholar 

  • Yang T, Jiang X, Zhong Y, Zhao X, Lin S, Li J, Li X, Jianlong X, Li Z, Zhu H. A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring [J]. ACS Sens. 2017;2(7):967–74.

    Article  CAS  Google Scholar 

  • Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics [J]. Adv Mater. 2019;31(48):e1904765.

    Article  Google Scholar 

  • Yang Y, Pan H, **e G, Jiang Y, Chen C, Yuanjie S, Wang Y, Tai H. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring [J]. Sens Actuator A Phys. 2020;301:111789.

    Article  CAS  Google Scholar 

  • Yang T, Deng W, Chu X, Wang X, Yeting H, Fan X, Song J, Gao Y, Zhang B, Tian G, **ong D, Zhong S, Tang L, Yonghe H, Yang W. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics [J]. ACS Nano. 2021;15(7):11555–63.

    Article  CAS  Google Scholar 

  • Yuan Z, Zhou T, Yin Y, Cao R, Li C, Wang ZL. Transparent and flexible triboelectric sensing array for touch security applications [J]. ACS Nano. 2017;11(8):8364–9.

    Article  CAS  Google Scholar 

  • YuHao Q, Jun** Z. An Azo-PDMS-based wearable UV sensor with the optimized photo response mode for dual sensing and synchronous detection [J]. Sci China Technol Sci. 2022;65:179–90.

    Google Scholar 

  • Zhang J, Wan L, Gao Y, Fang X, Ting L, Pan L, Xuan F. Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin [J]. Adv Electron Mater. 2019;5:1900285.

    Article  Google Scholar 

  • Zhang W, Yan **ao Y, Duan NL, Linlin W, Lou Y, Wang H, Peng Z. A high-performance flexible pressure sensor realized by overhanging cobweb-like structure on a micropost array [J]. ACS Appl Mater Interfaces. 2020;12(43):48938–47.

    Article  CAS  Google Scholar 

  • Zhao J, Guo H, Pang YK, ** F, Yang ZW, Liu G, Guo T, Dong G, Zhang C, Wang ZL. Flexible organic tribotronic transistor for pressure and magnetic sensing [J]. ACS Nano. 2017;11(11):11566–73.

    Article  CAS  Google Scholar 

  • Zhao T, Li T, Chen L, Yuan L, Li X, Zhang J. Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials [J]. ACS Appl Mater Interfaces. 2019;11(32):29466–73.

    Article  CAS  Google Scholar 

  • Zhong J, Li Z, Takakuwa M, Inoue D, Hashizume D, Jiang Z, Shi Y, Lexiang O, Nayeem MOG, Umezu S, Fukuda K, Someya T. Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions [J]. Adv Mater. 2022;34(6):e2107758.

    Article  Google Scholar 

  • Zhu B, Ling Y, Yap LW, Yang M, Lin F, Gong S, Wang Y, An T, Zhao Y, Cheng W. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring [J]. ACS Appl Mater Interfaces. 2019;11(32):29014–21.

    Article  CAS  Google Scholar 

  • Zou R, Shan S, Huang L, Chen Z, Lawson T, Lin M, Yan L, Liu Y. High-performance intraocular biosensors from chitosan-functionalized nitrogen-containing graphene for the detection of glucose [J]. ACS Biomater Sci Eng. 2019;6(1):673–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H., Lan, R., Chen, J., Li, L. (2023). The Flexible and Wearable Pressure Sensing Microsystems for Medical Diagnostics. In: Lim, KT., Abd-Elsalam, K.A. (eds) Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine. Springer, Cham. https://doi.org/10.1007/978-3-031-16084-4_10

Download citation

Publish with us

Policies and ethics

Navigation