A Mixed-Factor Evolutionary Algorithm for Multi-objective Knapsack Problem

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13393))

Included in the following conference series:

  • 1577 Accesses

Abstract

Nondominated-sorting plays an important role in multi-objective evolutionary algorithm in recent decades. However, it fails to work well when the target multi-objective problem has a complex Pareto front, brusque nondominated-sorting virtually steers by the conflicting nature of objectives, which leads to irrationality. In this paper, a novel mixed-factor evolutionary algorithm is proposed. A normalization procedure, i.e. mixed-factor, is introduced in the objective space, which links all the objectives for all the solutions of the problem to ease the conflicting nature. In the process of nondominated-sorting, the mixed factors of individual substitute the raw objectives. In order to ensure that the population are thoroughly steered through the normalized objective space, hybrid ageing operator and static hypermutation with first constructive mutation are used to guide the searching agents converge towards the true Pareto front. The algorithm proposed is operated on multi-objective knapsack problem. The effectiveness of MFEA is compared with five state-of-the-art algorithms, i.e., NSGA-II, NSGA-III, MOEA/D, SPEA2 and GrEA, in terms of five performance metrics. Simulation results demonstrate that MFEA achieves better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the First International Conference on Genetic Algorithms and their Applications. Lawrence Erlbaum Associates. Inc. Publishers (1985)

    Google Scholar 

  2. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  3. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. TIK-report, p. 103 (2001)

    Google Scholar 

  4. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VIII. Lecture Notes in Computer Science, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  5. Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  6. Li, H., Deb, K., Zhang, Q., Suganthan, P.N., Chen, L.: Comparison between MOEA/D and NSGA-III on a set of many and multi-objective benchmark problems with challenging difficulties. Swarm Evol. Comput. 46, 104–117 (2019). https://doi.org/10.1016/j.swevo.2019.02.003

    Article  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  9. Yang, S., Li, M., Liu, X., et al.: A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 17(5), 721–736 (2013)

    Article  Google Scholar 

  10. Moslehi, F., Haeri, A.: An evolutionary computation-based approach for feature selection. J. Ambient. Intell. Humaniz. Comput. 11(9), 3757–3769 (2019). https://doi.org/10.1007/s12652-019-01570-1

    Article  Google Scholar 

  11. Ragmani, A., Elomri, A., Abghour, N., Moussaid, K., Rida, M.: FACO: a hybrid fuzzy ant colony optimization algorithm for virtual machine scheduling in high-performance cloud computing. J. Ambient. Intell. Humaniz. Comput. 11(10), 3975–3987 (2019). https://doi.org/10.1007/s12652-019-01631-5

    Article  Google Scholar 

  12. Wang, P., Xue, F., Li, H., Cui, Z., **e, L., Chen, J.: A multi-objective DV-hop localization algorithm based on NSGA-II in internet of things. Mathematics 7(2), 184 (2019). https://doi.org/10.3390/math7020184

    Article  Google Scholar 

  13. Corus, D., Oliveto, P.S., Yazdani, D.: When hypermutations and ageing enable artificial immune systems to outperform evolutionary algorithm. Theoret. Comput. Sci. (2019). https://doi.org/10.1016/j.tcs.2019.03.002

    Article  MATH  Google Scholar 

  14. Zhou, Z., Yang, Y., Qian, C.: Evolutionary Learning: Advances in Theories and Algorithms, pp. 6–9. Springer, Berlin (2019). https://doi.org/10.1007/978-981-13-5956-9

    Book  MATH  Google Scholar 

  15. Lust, T., Teghem, J.: The multi-objective multidimensional knapsack problem: A survey and a new approach. Int. Trans. Oper. Res. 19(4), 495–520 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer US, Boston, MA (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  17. Kumar, R., Banerjee, N.: Analysis of a multi-objective evolutionary algorithm on the 0–1 knapsack problem. Theoret. Comput. Sci. 358(1), 104–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zouache, D., Moussaoui, A., et al.: A cooperative swarm intelligence algorithm for multi-objective discrete optimization with application to the knapsack problem. European J. Oper. Res. 264(1), 74–88 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oliveto, P.S., Sudholt, D.: On the runtime analysis of stochastic ageing mechanisms. In: Proceedings of the GECCO 2014, pp. 113–120 (2014)

    Google Scholar 

  20. Zitzler, E., Thiele, L.: Multi-objective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  21. Van Veldhuizen, D.A., Lamont, G.B.: On measuring multi-objective evolutionary algorithm performance. In: Proceedings of the 2000 Congress on Evolutionary Computation 2000, pp. 204–211. IEEE (2000)

    Google Scholar 

  22. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature—PPSN V, pp. 292–301. Springer Berlin Heidelberg, Berlin, Heidelberg (1998). https://doi.org/10.1007/BFb0056872

    Chapter  Google Scholar 

  23. Schott, J.R.: Fault tolerant design using single and multicriteria genetic algorithm optimization. AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH (1995)

    Google Scholar 

Download references

Acknowledgements

The authors would thank the reviewers for their valuable reviews and constructive comments. This work was supported by the project in the Education Department of Hainan Province (project number:Hnky2020–5), Hainan Provincial Natural Science Foundation of China (N0. 620QN237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, Y., Feng, Z., Shen, Y. (2022). A Mixed-Factor Evolutionary Algorithm for Multi-objective Knapsack Problem. In: Huang, DS., Jo, KH., **g, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13393. Springer, Cham. https://doi.org/10.1007/978-3-031-13870-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13870-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13869-0

  • Online ISBN: 978-3-031-13870-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation