Arbuscular Mycorrhizal Symbiosis in Temperate Grassland Forage Species of Argentina

  • Chapter
  • First Online:
Mycorrhizal Fungi in South America

Part of the book series: Fungal Biology ((FUNGBIO))

  • 410 Accesses

Abstract

Grasslands are the sources of many agronomic productions, livestock systems, and environmental issues with positive and recognized impacts on water quality and biodiversity. Arbuscular mycorrhizal (AM) fungi are one of the most common root-associated soil biota, which influence plant productivity. In this sense, AM fungi are of high value for the functioning and sustainability of grasslands. Soil characteristics, plant species, and climate factors are known to influence AM fungal communities in temperate grassland ecosystems of South America. Thus, the uses of these environments for raising livestock as well as the addition of fertilizers to increase the forage resource are agronomic practices which modify not only the plant communities but also the AM fungal communities and then the benefits of this fungal group on plant development could decrease. On the other hand, phosphorus (P) fertilization is necessary to obtain maximum forage yield in most P-deficient grassland soils. However, when P availability in the soil increases due to the fertilization, both AM root colonization and mycorrhizal response decrease in several plant species, even if AM fungi can still be actively contributing to plant P uptake. Compared with agricultural crops, little is known about the effect of grazing/defoliation or P fertilization on the symbiosis between forage species and AM fungal communities from grassland soils of Argentina. Specially, this chapter discusses the ecological role of AM symbiosis on the functioning of temperate grasslands of Argentina as valuable information to promote better management of forage land sustainably while increasing forage production and preserve the beneficial effects of AM communities in these ecosystems. We focus mainly on the effects of grazing/defoliation and P fertilization on the mycorrhizal status and AM benefits on forage species growing on grassland soils of the Argentine Flooding Pampa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott L, Robson A (1991) Factors influencing the occurrence of vesicular arbuscular mycorrhizas. Agric Ecosyst Environ 35:121–150

    Article  Google Scholar 

  • Bailleres M, Pirodi F (2000) Fertilización a campo natural en la chacra experimental Manantiales. Ida Vuelta Rural (INTA) 11:5–6

    Google Scholar 

  • Barto EK, Rillig MC (2010) Does herbivory really suppress mycorrhiza? A meta-analysis. J Ecol 98(4):745–753

    Article  Google Scholar 

  • Barto EK, Alt F, Oelmann Y, Wilcke W, Rillig MC (2010) Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biol Biochem 42(12):2316–2324

    Article  CAS  Google Scholar 

  • Burkart SE, Garbulsky MF, Ghersa CM, Guerschman JP, León RJC, Oesterheld M, Pauelo JM, Perelman SB (2005) Las comunidades potenciales del pastizal pampeano bonaerense. La heterogeneidad de la vegetación en los agroecosistemas. Editorial Facultad de Agronomía, Buenos Aires, pp 379–399

    Google Scholar 

  • Cahuépé M (2004) Does Lotus glaber improve beef production at the flooding pampas? Lotus Newsl 34:38–43

    Google Scholar 

  • Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC (2014) Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Glob Chang Biol 20(12):3646–3659

    Article  PubMed  Google Scholar 

  • Cavagnaro RA, Oyarzabal M, Oesterheld M, Grimoldi AA (2014) Screening of biomass production of cultivated forage grasses in response to mycorrhizal symbiosis under nutritional deficit conditions. Grassl Sci 60(3):178–184

    Article  Google Scholar 

  • Cavagnaro RA, Oyarzabal M, Oesterheld M, Grimoldi AA (2021) Species-specific trade-offs between regrowth and mycorrhizas in the face of defoliation and phosphorus addition. Fungal Ecol 51:101058

    Article  Google Scholar 

  • Chippano T, García I (2021a) Efecto del incremento de la disponibilidad de P sobre la infectividad del inóculo de hongos micorrícicos arbusculares nativos de un suelo de la Cuenca del Río Salado. V Congreso Argentino de Microbiología Agrícola y Ambiental

    Google Scholar 

  • Chippano T, García I (2021b) La asociación con hongos micorrícicos arbuculares mejora el crecimiento de plántulas de Lotus tenuis en la vecindad de plantas conespecíficas intensamente defoliadas. V Congreso Argentino de Microbiología Agrícola y Ambiental

    Google Scholar 

  • Chippano T, García I, Cofré N, Mendoza R (2020) Forage biomass yield and arbuscular mycorrhizal symbiosis in a legume and C3 and C4 grasses under increasing soil phosphorus availability. Crop Pasture Sci 71(10):907–915

    Article  CAS  Google Scholar 

  • Chippano T, Mendoza R, Cofré N, García I (2021) Divergent root P uptake strategies of three temperate grassland forage species. Rhizosphere 17:100312

    Article  Google Scholar 

  • Cofré MN, Ferrari AE, Becerra A, Domínguez L, Wall LG, Urcelay C (2017) Effects of crop** systems under no-till agriculture on arbuscular mycorrhizal fungi in Argentinean Pampas. Soil Use Manag 33(2):364–378

    Article  Google Scholar 

  • Conant RT, Cerri CEP, Osborne BB, Paustian K (2017) Grassland management impacts on soil carbon stocks: a new synthesis. Ecol Appl 27(2):662–668

    Article  PubMed  Google Scholar 

  • Covacevich F, Marin MA, Echeverría HE (2006) The phosphorus source determines the arbuscular mycorrhizal potential and the native mycorrhizal colonization of tall fescue and wheatgrass. Eur J Soil Biol 42(3):127–138

    Article  CAS  Google Scholar 

  • Di Bella CE, García-Parisi PA, Lattanzi FA, Druille M, Schnyder H, Grimoldi AA (2019) Grass to legume facilitation in saline-sodic steppes: influence of vegetation seasonality and root symbionts. Plant Soil 443(1):509–523

    Article  Google Scholar 

  • Druille M, Cabello MN, Omacini M, Golluscio RA (2013) Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi. Appl Soil Ecol 64:99–103

    Article  Google Scholar 

  • Druille M, Cabello MN, García Parisi PA, Golluscio RA, Omacini M (2015) Glyphosate vulnerability explains changes in root-symbionts propagules viability in pampean grasslands. Agric Ecosyst Environ 202:48–55

    Article  CAS  Google Scholar 

  • Druille M, Acosta A, Acosta G, Rossi JL, Golluscio RA, Bailleres M (2017) Response of beneficial soil fungi associated with Lotus tenuis to the application of glyphosate. Rev Investig Agropecu 43(3):297–302

    Google Scholar 

  • Eom AH, Wilson GW, Hartnett DC (2001) Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia 93(2):233–242

    Article  Google Scholar 

  • Escudero VG, Mendoza RE (2005) Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza 15:291–299

    Article  PubMed  Google Scholar 

  • Facelli E, Facelli JM, Smith SE, McLaughlin MJ (1999) Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability on Trifolium subterraneum cv. Mt. Barker. New Phytol 141(3):535–547

    Article  Google Scholar 

  • Faghihinia M, Zou Y, Chen Z, Bai Y, Li W, Marrs R, Staddon PL (2020) Environmental drivers of grazing effects on arbuscular mycorrhizal fungi in grasslands. Appl Soil Ecol 153:103591

    Article  Google Scholar 

  • Fitzsimons MS, Miller RM, Jastrow JD (2008) Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158:117–127

    Article  PubMed  Google Scholar 

  • Fornara DA, Flynn D, Caruso T (2020) Improving phosphorus sustainability in intensively managed grasslands: the potential role of arbuscular mycorrhizal fungi. Sci Total Environ 706:135744

    Article  CAS  PubMed  Google Scholar 

  • Frank DA, Gehring CA, Machut L, Phillips M (2003) Soil community composition and the regulation of grazed temperate grassland. Oecologia 137(4):603–609

    Article  PubMed  Google Scholar 

  • Fusconi A, Mucciarelli M (2018) How important is arbuscular mycorrhizal colonization in wetland and aquatic habitats? Environ Exp Bot 155:128–141

    Article  Google Scholar 

  • García I (2008) Variación temporal de la simbiosis entre micorrizas arbusculares y plantas en un gradiente hídrico, salino y sódico de la Cuenca del Río Salado. Doctoral thesis, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Argentina

    Google Scholar 

  • García I (2021) Lotus tenuis and Schedonorus arundinaceus co-culture exposed to defoliation and water stress. Rev FCA UNCuyo 53(2):100–108. https://revistas.uncu.edu.ar/ojs3/index.php/RFCA/article/view/5173

    Article  Google Scholar 

  • García I, Mendoza RE (2007) Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Mycorrhiza 17:167–174

    Article  PubMed  Google Scholar 

  • García I, Mendoza RE (2008) Relationships among soil properties, plant nutrition and arbuscular mycorrhizal fungi-plant symbioses in a temperate grassland along hydrologic, saline and sodic gradients. FEMS Microbiol Ecol 63:359–371

    Article  PubMed  Google Scholar 

  • García I, Mendoza R (2012) Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil. Plant Biol 14(6):964–971

    Article  PubMed  Google Scholar 

  • García I, Cabello M, Fernández-López C, Chippano T, Mendoza R (2017) Hongos micorrícicos arbusculares en asociación con Lotus tenuis en ambientes halomórficos de la Cuenca del río Salado. CONEBIOS V Ecología y Biología de Suelos, Buenos Aires. ISBN 978-987-3941-39-9

    Google Scholar 

  • García PE, Badano ND, Menéndez AN, Bert F, García G, Podestá G, Rovere S, Verdin A, Rajagopalan B, Arora P (2018) Influencia de los cambios en el uso del suelo y la precipitación sobre la dinámica hídrica de una cuenca de llanura extensa. Caso de estudio: Cuenca del Río Salado, Buenos Aires, Argentina. Ribagua 5(2):92–106

    Article  Google Scholar 

  • Gehring CA, Whitham TG (1994) Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends Ecol Evol 9(7):251–255

    Article  CAS  PubMed  Google Scholar 

  • Ginzo HD, Collantes M, Caso OH (1982) Fertilization of a native grassland in the ‘Depresion del Rio Salado’, Province of Buenos Aires: herbage dry matter accumulation and botanical composition. J Range Manag 35(1):35–39

    Article  Google Scholar 

  • Ginzo HD, Collantes MB, Caso OH (1986) Fertilization of a halophytic grassland in Argentina: herbage dry matter, botanical composition, and mineral content. Turrialba 36:453–459

    Google Scholar 

  • Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198(2):546–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigera G, Oesterheld M (2004) Mycorrhizal colonization patterns under contrasting grazing and topographic conditions in the Flooding Pampa (Argentina). J Range Manag 57(6):601–605

    Article  Google Scholar 

  • Gryndler M, Larsen J, Hršelová H, Řezáčová V, Gryndlerová H, Kubát J (2006) Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 16(3):159–166

    Article  CAS  PubMed  Google Scholar 

  • Hetrick BD, Wilson GWT, Todd TC (1990) Differential responses of C3 and C4 grasses to mycorrhizal symbiosis, phosphorus fertilization, and soil microorganisms. Can J Bot 68(3):461–467

    Article  Google Scholar 

  • Hokka V, Mikola J, Vestberg M, Setälä H (2004) Interactive effects of defoliation and an AM fungus on plants and soil organisms in experimental legume–grass communities. Oikos 106(1):73–84

    Article  CAS  Google Scholar 

  • Hopkins A, Wilkins RJ (2006) Temperate grassland: key developments in the last century and future perspectives. J Agric Sci 144:503–523

    Article  CAS  Google Scholar 

  • Ikoyi I, Fowler A, Schmalenberger A (2018) One-time phosphate fertilizer application to grassland columns modifies the soil microbiota and limits its role in ecosystem services. Sci Total Environ 630:849–858

    Article  CAS  PubMed  Google Scholar 

  • ILRI, IUCN, FAO, WWF, UNEP, ILC (2021) Rangelands atlas. ILRI, Nairobi Kenya. ISBN 978-1-904722-67-0

    Google Scholar 

  • Ingham ER, Wilson MV (1999) The mycorrhizal colonization of six wetland plant species at sites differing in land use history. Mycorrhiza 9(4):233–235

    Article  Google Scholar 

  • Jeffery RP, Simpson RJ, Lambers H, Orchard S, Kidd DR, Haling RE, Ryan MH (2018) Contrasting communities of arbuscule-forming root symbionts change external critical phosphorus requirements of some annual pasture legumes. Appl Soil Ecol 126:88–97

    Article  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231(1):65–79

    Article  CAS  Google Scholar 

  • Klabi R, Hamel C, Schellenberg MP, Iwaasa A, Raies A, St-Arnaud M (2014) Interaction between legume and arbuscular mycorrhizal fungi identity alters the competitive ability of warm-season grass species in a grassland community. Soil Biol Biochem 70:176–182

    Article  CAS  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84(9):2292–2301

    Article  Google Scholar 

  • Klironomos J, Zobel M, Tibbett M, Stock WD, Rillig MC, Parrent JL, Moora M, Koch AM, Facelli JM, Facelli E, Dickie IA, Bever JD (2011) Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol 189(2):366–370

    Article  PubMed  Google Scholar 

  • Kytöviita MM, Vestberg M, Tuomi J (2003) A test of mutual aid in common mycorrhizal networks: established vegetation negates benefit in seedlings. Ecology 84(4):898–906

    Article  Google Scholar 

  • Lavado RS, Rubio G, Casasola G, Alvarez CR (1993) In: Barrow J (ed) Nitrogen and phosphorus nutrition of two species of a natural grassland under waterlogging and fertilization. Developments in plant and soil sciences, vol 45. Kluwer, Dordretch, pp 341–344

    Google Scholar 

  • Mäder P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Fert Soils 31(2):150–156

    Article  Google Scholar 

  • McSherry ME, Ritchie ME (2013) Effects of grazing on grassland soil carbon: a global review. Glob Chang Biol 19:1347–1357

    Article  PubMed  Google Scholar 

  • Mendoza RE, García IV (2019) Capítulo 6: Aspectos nutricionales de la relación entre especies forrajeras y microorganismos simbiontes en suelos salinos y salino-sódicos de la Cuenca del río Salado. In: Bandera R (ed) Suelos afectados por sales con énfasis en la Argentina, 1st edn. Ciudad Autónoma de Buenos Aires, pp 105–131

    Google Scholar 

  • Mendoza R, Pagani E (1997) Influence of phosphorus nutrition on mycorrhizal growth response and morphology of mycorrhizae in Lotus tenuis. J Plant Nutr 20:625–639

    Article  CAS  Google Scholar 

  • Mendoza R, del Lamas MC, García I (2009) How do soil P tests, plant yield and P acquisition by Lotus tenuis plants reflect the availability of added P from different phosphate sources. Nutr Cycl Agroecosyst 85(1):17–29

    Article  CAS  Google Scholar 

  • Mendoza R, Bailleres M, García I, Ruiz O (2016a) Phosphorus fertilization of a grass-legume mixture: effect on plant growth, nutrients acquisition and symbiotic associations with soil microorganisms. J Plant Nutr 39(5):691–701

    Article  CAS  Google Scholar 

  • Mendoza R, García I, Depalma D, López CF (2016b) Competition and growth of a grass-legume mixture fertilised with nitrogen and phosphorus: effect on nutrient acquisition, root morphology and symbiosis with soil microorganisms. Crop Pasture Sci 67(6):629–640

    Article  CAS  Google Scholar 

  • Menéndez AB, Scervino JM, Godeas AM (2001) Arbuscular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province, Argentina. Biol Fertil Soils 33:373–381

    Article  Google Scholar 

  • Miller SP, Bever JD (1999) Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia 119(4):586–592

    Article  PubMed  Google Scholar 

  • Muir JP, Pitman WD, Foster JL (2011) Sustainable, low-input, warm-season, grass–legume grassland mixtures: mission (nearly) impossible? Grass Forage Sci 66(3):301–315

    Article  Google Scholar 

  • Oehl F, Laczko E, Oberholzer HR, Jansa J, Egli S (2017) Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biol Fertil Soils 53(7):777–797

    Article  Google Scholar 

  • Perelman SB, León RJC, Oesterheld M (2001) Cross-scale vegetation patterns of flooding Pampa grasslands. J Ecol 89:562–577

    Article  Google Scholar 

  • Rehling F, Sandner TM, Matthies D (2021) Biomass partitioning in response to intraspecific competition depends on nutrients and species characteristics: a study of 43 plant species. J Ecol 109(5):2219–2233

    Article  Google Scholar 

  • Rubio G, Micucci FG, García FO (2012) Ciclado de nutrientes y fertilización de pasturas. In: Álvarez R, Prystupa P, Rodríguez M, Álvarez C (eds) Fertilización de cultivos y pasturas. Diagnóstico y Recomendación en la Región Pampeana, 1st edn. Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, pp 275–297

    Google Scholar 

  • Saravesi K, Ruotsalainen AL, Cahill JF (2014) Contrasting impacts of defoliation on root colonization by arbuscular mycorrhizal and dark septate endophytic fungi of Medicago sativa. Mycorrhiza 24(4):239–245

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis. Academic Press

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162(2):511–524

    Article  Google Scholar 

  • Soriano A, León RJC, Lavado RS, Deregibus VA, Cahuépé MA, Scaglia OA, Velázquez CA, Lemcoff JH (1991) Río de La Plata grassland. In: Coupland RT (ed) Ecosystem of the world-natural grasslands, Chapter 19, Volumen 8A. Elsevier Science Publishers, Ansterdam, pp 367–407

    Google Scholar 

  • Suttie JM, Reynolds SG, Batello C (2005) Grasslands of the world. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Tawaraya K (2003) Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr 49(5):655–668

    Article  Google Scholar 

  • Tedersoo L, Bahram M, Zobel M (2020) How mycorrhizal associations drive plant population and community biology. Science 367:6480

    Article  Google Scholar 

  • Tran BT, Watts-Williams SJ, Cavagnaro TR (2019) Impact of an arbuscular mycorrhizal fungus on the growth and nutrition of fifteen crop and pasture plant species. Funct Plant Biol 46(8):732–742

    Article  PubMed  Google Scholar 

  • Valladares F, Bastias CC, Godoy O, Granda E, Escudero A (2015) Species coexistence in a changing world. Front Plant Sci 6:866

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Heijden MG, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97(6):1139–1150

    Article  Google Scholar 

  • van der Heijden MG, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172(4):739–752

    Article  PubMed  Google Scholar 

  • van der Heyde M, Bennett JA, Pither J, Hart M (2017) Longterm effects of grazing on arbuscular mycorrhizal fungi. Agric Ecosyst Environ 243:27–33

    Article  Google Scholar 

  • van der Heyde M, Abbott LK, Gehring C, Kokkoris V, Hart MM (2019) Reconciling disparate responses to grazing in the arbuscular mycorrhizal symbiosis. Rhizosphere 11:100167

    Article  Google Scholar 

  • Van Geel M, Jacquemyn H, Plue J, Saar L, Kasari L, Peeters G, van Acker K, Honnay O, Ceulemans T (2018) Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands. New Phytol 220(4):1262–1272

    Article  PubMed  Google Scholar 

  • Yang W, Zheng Y, Gao C, He X, Ding Q, Kim Y, Rui Y, Wang S, Guo LD (2013) The arbuscular mycorrhizal fungal community response to warming and grazing differs between soil and roots on the Qinghai-Tibetan Plateau. PLoS One 8(9):e76447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Chen J, Shen Y, Dong F, Chen J (2020) Global negative effects of livestock grazing on arbuscular mycorrhizas: a meta-analysis. Sci Total Environ 708:134553

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) (PIP 0950) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 01901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana V. García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García, I.V., Chippano, T.A. (2022). Arbuscular Mycorrhizal Symbiosis in Temperate Grassland Forage Species of Argentina. In: Lugo, M.A., Pagano, M.C. (eds) Mycorrhizal Fungi in South America. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-12994-0_17

Download citation

Publish with us

Policies and ethics

Navigation