Implementing Large-Scale ABox Materialization Using Subgraph Reasoning

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13368))

Abstract

The ontology knowledge base can be divided into two parts: TBox and ABox, where the former models schema-level knowledge within the domain, and the latter is a statement of assertions or facts about a set of instances. ABox materialization is the process of discovering implicit assertions in ABox by reasoning based on existing knowledge, which is important in knowledge base applications. Ontology reasoning is a common method for ABox materialization. However, it is considered to be a computationally intensive operation and does not scale well for large-scale ABox. To solve this problem, this paper proposes an approximate reasoning hypothesis: materialization on the overall ABox is approximately equivalent to the collection of subgraph reasoning on ABox. Based on this hypothesis, a subgraph reasoning method for large-scale ABox materialization is proposed. Subgraph reasoning first divides ABox into instance-centered multi-hops subgraphs, then performs ontology reasoning on each subgraph, and finally takes the collection of all subgraph reasoning results as the result of ABox materialization. We conduct experiments on multiple open-source ontologies, and analyze the rationality of the approximate reasoning hypothesis. The experimental results show that subgraph reasoning can effectively improve the reasoning efficiency and achieve superior scalability for large-scale ABox materialization reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 126.59
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cs.man.ac.uk/~ezolin/dl/.

  2. 2.

    http://krr-nas.cs.ox.ac.uk/ontologies/lib/LUBM/.

  3. 3.

    http://protege.cim3.net/file/pub/ontologies/family.swrl.owl/family.swrl.owl.

  4. 4.

    http://stl.mie.utoronto.ca/ontologies/simple_event_model/sem_r.swrl.

  5. 5.

    https://github.com/sbatsakis/TemporalRepresentations.

References

  1. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 1–17. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_0

    Chapter  Google Scholar 

  2. Ian, H.: Historical ontology. In: In the Scope of Logic, Methodology, and Philosophy of Science, pp. 583–600. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-0475-5_13

  3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001). https://doi.org/10.1038/35074206

    Article  Google Scholar 

  4. Horrocks, I.: OWL: a description logic based ontology language. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 5–8. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_2

    Chapter  Google Scholar 

  5. Glimm, B., Kazakov, Y., Liebig, T., Tran, T.-K., Vialard, V.: Abstraction refinement for ontology materialization. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 180–195. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11915-1_12

    Chapter  Google Scholar 

  6. Gottschalk, S., Demidova, E.: EventKG: a multilingual event-centric temporal knowledge graph. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 272–287. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_18

    Chapter  Google Scholar 

  7. Jia, Y., Qi, Y., Shang, H., Jiang, R., Li, A.: A practical approach to constructing a knowledge graph for cybersecurity. Engineering 4(01), 117–133 (2018). https://doi.org/10.1016/j.eng.2018.01.004

    Article  Google Scholar 

  8. Alshahrani, M., Khan, M.A., Maddouri, O., et al.: Neuro-symbolic representation learning on biological knowledge graphs. Bioinformatics 33(17), 2723–2730 (2017). https://doi.org/10.1093/bioinformatics/btx275

    Article  Google Scholar 

  9. Pan, J.Z., Ren, Y., Zhao, Y.: Tractable approximate deduction for OWL. Artif. Intell. 235, 95–155 (2016). https://doi.org/10.1016/j.artint.2015.10.004

    Article  MathSciNet  MATH  Google Scholar 

  10. Narayanan, S., Catalyurek, U., Kurc, T., et al.: Parallel materialization of large ABoxes. In: Proceedings of the 2009 ACM Symposium on Applied Computing, pp. 1257–1261 (2009). https://doi.org/10.1145/1529282.1529564

  11. Rabbi, F., MacCaull, W., Faruqui, R.U.: A scalable ontology reasoner via incremental materialization. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 221–226. IEEE (2013). https://doi.org/10.1109/CBMS.2013.6627792

  12. Grau, B.C., Horrocks, I., Motik, B., et al.: OWL 2: the next step for OWL. J. Web Semant. 6(4), 309–322 (2008). https://doi.org/10.1016/j.websem.2008.05.001

    Article  Google Scholar 

  13. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  14. Krötzsch, M.: OWL 2 profiles: an introduction to lightweight ontology languages. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 112–183. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33158-9_4

    Chapter  Google Scholar 

  15. Mehla, S., Jain, S.: Rule languages for the semantic web. In: Abraham, A., Dutta, P., Mandal, J.K., Bhattacharya, A., Dutta, S. (eds.) Emerging Technologies in Data Mining and Information Security. AISC, vol. 755, pp. 825–834. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1951-8_73

    Chapter  Google Scholar 

  16. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48(1), 1–26 (1991). https://doi.org/10.1016/0004-3702(91)90078-X

    Article  MathSciNet  MATH  Google Scholar 

  17. Baumgartner, P.: Hyper tableau—the next generation. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 60–76. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69778-0_14

    Chapter  Google Scholar 

  18. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. J. Web Semant. 3(2–3), 158–182 (2005). https://doi.org/10.1016/j.websem.2005.06.005

    Article  Google Scholar 

  19. Golbreich, C.: Combining rule and ontology reasoners for the semantic web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 6–22. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30504-0_2

    Chapter  Google Scholar 

  20. Katsumi, M., Grüninger, M.: Using PSL to extend and evaluate event ontologies. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 225–240. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21542-6_15

    Chapter  Google Scholar 

  21. Batsakis, S., Tachmazidis, I., Antoniou, G.: Representing time and space for the semantic web. Int. J. Artif. Intell. Tools 26(03), 1750015.1-1750015.30 (2017). https://doi.org/10.1142/S0218213017600156

  22. Sirin, E., Parsia, B., Grau, B.C., et al.: Pellet: a practical owl-dl reasoner. J. Web Semant. 5(2), 51–53 (2007). https://doi.org/10.1016/j.websem.2007.03.004

    Article  Google Scholar 

  23. Bin, L., Hang, C., Min, L., et al.: A graph data synthesis method, device, computer device and storage medium. Patent for Invention (2021)

    Google Scholar 

  24. Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax specification (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, X., Lin, B., Ding, Z., Yao, L., Zhu, C. (2022). Implementing Large-Scale ABox Materialization Using Subgraph Reasoning. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13368. Springer, Cham. https://doi.org/10.1007/978-3-031-10983-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10983-6_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10982-9

  • Online ISBN: 978-3-031-10983-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation