Small Lesion Segmentation in Brain MRIs with Subpixel Embedding

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12962))

Included in the following conference series:

Abstract

We present a method to segment MRI scans of the human brain into ischemic stroke lesion and normal tissues. We propose a neural network architecture in the form of a standard encoder-decoder where predictions are guided by a spatial expansion embedding network. Our embedding network learns features that can resolve detailed structures in the brain without the need for high-resolution training images, which are often unavailable and expensive to acquire. Alternatively, the encoder-decoder learns global structures by means of striding and max pooling. Our embedding network complements the encoder-decoder architecture by guiding the decoder with fine-grained details lost to spatial downsampling during the encoder stage. Unlike previous works, our decoder outputs at \(2\times \) the input resolution, where a single pixel in the input resolution is predicted by four neighboring subpixels in our output. To obtain the output at the original scale, we propose a learnable downsampler (as opposed to hand-crafted ones e.g. bilinear) that combines subpixel predictions. Our approach improves the baseline architecture by \(\approx \)11.7% and achieves the state of the art on the ATLAS public benchmark dataset with a smaller memory footprint and faster runtime than the best competing method. Our source code has been made available at: https://github.com/alexklwong/subpixel-embedding-segmentation.

A. Wong and A. Chen—Authors with equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asadi-Aghbolaghi, M., Azad, R., Fathy, M., Escalera, S.: Multi-level context gating of embedded collective knowledge for medical image segmentation. ar**v preprint ar**v:2003.05056 (2020)

  2. Atlantis, T., et al.: Association of outcome with early stroke treatment: pooled analysis of atlantis, ecass, and ninds rt-pa stroke trials. Lancet 363(9411), 768–774 (2004)

    Google Scholar 

  3. Chen, Y., Li, J., **ao, H., **, X., Yan, S., Feng, J.: Dual path networks. ar**v preprint ar**v:1707.01629 (2017)

  4. Ciresan, D., Giusti, A., Gambardella, L., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. Adv. Neural. Inf. Process. Syst. 25, 2843–2851 (2012)

    Google Scholar 

  5. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  6. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  9. Hui, H., Zhang, X., Li, F., Mei, X., Guo, Y.: A partitioning-stacking prediction fusion network based on an improved attention u-net for stroke lesion segmentation. IEEE Access 8, 47419–47432 (2020)

    Article  Google Scholar 

  10. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic gradient descent. In: ICLR: International Conference on Learning Representations, pp. 1–15 (2015)

    Google Scholar 

  11. Liew, S.L., et al.: A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Sci. Data 5, 180011 (2018)

    Article  Google Scholar 

  12. Liew, S.L., et al.: The anatomical tracings of lesions after stroke (atlas) dataset-release 1.1. bioRxiv, p. 179614 (2017)

    Google Scholar 

  13. Maier, O., et al.: Isles 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)

    Article  Google Scholar 

  14. Manvel, A., Vladimir, K., Alexander, T., Dmitry, U.: Radiologist-level stroke classification on non-contrast CT scans with deep U-net. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 820–828. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_91

    Chapter  Google Scholar 

  15. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  16. Pham, C.H., Ducournau, A., Fablet, R., Rousseau, F.: Brain MRI super-resolution using deep 3D convolutional networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 197–200. IEEE (2017)

    Google Scholar 

  17. Pham, C.H., et al.: Multiscale brain MRI super-resolution using deep 3D convolutional networks. Comput. Med. Imaging Graph. 77, 101647 (2019)

    Article  Google Scholar 

  18. Qi, K., et al.: X-net: brain stroke lesion segmentation based on depthwise separable convolution and long-range dependencies. In: Shen, D., et al. (eds.) X-net: brain stroke lesion segmentation based on depthwise separable convolution and long-range dependencies. LNCS, vol. 11766, pp. 247–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_28

    Chapter  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Rueda, A., Malpica, N., Romero, E.: Single-image super-resolution of brain MR images using overcomplete dictionaries. Med. Image Anal. 17(1), 113–132 (2013)

    Article  Google Scholar 

  21. Seyedhosseini, M., Sajjadi, M., Tasdizen, T.: Image segmentation with cascaded hierarchical models and logistic disjunctive normal networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2013

    Google Scholar 

  22. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  23. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, vol. 28, pp. 802–810 (2015)

    Google Scholar 

  24. Song, H., Wang, W., Zhao, S., Shen, J., Lam, K.M.: Pyramid dilated deeper ConvLSTM for video salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 715–731 (2018)

    Google Scholar 

  25. Tang, Z., Pan, B., Liu, E., Xu, X., Shi, T., Shi, Z.: SRDA-net: super-resolution domain adaptation networks for semantic segmentation. ar**v preprint ar**v:2005.06382 (2020)

  26. Tureckova, A., Rodríguez-Sánchez, A.J.: ISLES challenge: U-shaped convolution neural network with dilated convolution for 3D stroke lesion segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 319–327. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_32

    Chapter  Google Scholar 

  27. Valanarasu, J.M.J., Sindagi, V.A., Hacihaliloglu, I., Patel, V.M.: KiU-net: towards accurate segmentation of biomedical images using over-complete representations. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 363–373. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_36

    Chapter  Google Scholar 

  28. Virani, S.S., et al.: Heart disease and stroke statistics-2020 update: a report from the American heart association. Circulation 141(9), e139–e596 (2020)

    Article  Google Scholar 

  29. Wang, L., Li, D., Zhu, Y., Tian, L., Shan, Y.: Dual super-resolution learning for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3774–3783 (2020)

    Google Scholar 

  30. Chan, B.P., Albers, G.W.: Acute ischemic stroke. Curr. Treat. Options. Neurol. 1(2), 83–95 (1999). https://doi.org/10.1007/s11940-999-0009-5

    Article  Google Scholar 

  31. Yang, H., et al.: CLCI-net: cross-level fusion and context inference networks for lesion segmentation of chronic stroke. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 266–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_30

    Chapter  Google Scholar 

  32. Zhou, Y., Huang, W., Dong, P., **a, Y., Wang, S.: D-Unet: a dimension-fusion u shape network for chronic stroke lesion segmentation. IEEE/ACM Trans. Comput. Biol. Bioinform. (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH-NEI 5R01EY029689 and R01EY030595, ARO W911NF-17-1-0304, NRF-2017R1A2B4006023 and IITP-2021-0-01341, AI Graduate School (CAU) in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Wong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1456 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wong, A. et al. (2022). Small Lesion Segmentation in Brain MRIs with Subpixel Embedding. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08999-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08998-5

  • Online ISBN: 978-3-031-08999-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation