Conclusions and Future Works

  • Chapter
  • First Online:
Self-Powered Smart Fabrics for Wearable Technologies

Part of the book series: Springer Theses ((Springer Theses))

  • 219 Accesses

Abstract

The main objective of this thesis was develo** piezoelectric fibers and textiles for sensing and energy generation applications including the real-time monitoring of human movements and micro-power-generation in E-Textile industries. To reduce cost and bring real impact to society, large-scale production of energy harvesting smart textiles is an important factor. Therefore, poly(vinylidene fluoride) (PVDF) as a piezoelectric polymer was fabricated in the form of fibers using melt spinning that demonstrated the ability for mass production and fabrication of flexible microfibres. These piezofibers have the ability to generate voltage after any kind of deformation such as bending compression, impact and stretching. Hence, these fibers were considered suitable for integration into textile structures that were to be investigated as self-powered wireless sensors, structural and human health monitoring systems, and cheaply harvesting energy from human movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 159.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 159.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vatansever, D., Hadimani, R., Shah, T., Siores, E.: An investigation of energy harvesting from renewable sources with PVDF and PZT. Smart Mater. Struct. 20(5), 055019 (2011)

    Article  Google Scholar 

  2. Lee, M., Chen, C.-Y., Wang, S., Cha, S.N., Park, Y.J., Kim, J.M., Chou, L.-J., Wang, Z.L.: A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 24(13), 1759–1764 (2012)

    Article  CAS  Google Scholar 

  3. Chen, D., Sharma, T., Zhang, J.X.J.: Mesoporous surface control of PVDF thin films for enhanced piezoelectric energy generation. Sens. Actuators A 216, 196 (2014)

    Google Scholar 

  4. Kumar, C., Gaur, A., Rai, S.K., Maiti, P.: Piezo devices using poly(vinylidene fluoride)/reduced graphene oxide hybrid for energy harvesting. Nano-Struct. Nano-Objects 12, 174 (2017)

    Article  CAS  Google Scholar 

  5. Yoon, S.-J., Arakawa, K., Uchino, M.: Development of an energy harvesting damper using PVDF film. Int. J. Energy Res. 39(11), 1545–1553 (2015)

    Article  CAS  Google Scholar 

  6. Emamian, S., Chlaihawi, A.A., Narakathu, B.B., Bazuin, B.J., Atashbar, M.Z.: A piezoelectric based vibration energy harvester fabricated using screen printing technique. In: 2016 IEEE Sensors, p. 1, 30 Oct 2016–3 Nov 2016 (2016)

    Google Scholar 

  7. Karan, S.K., Bera, R., Paria, S., Das, A.K., Maiti, S., Maitra, A., Khatua, B.B.: An approach to design highly durable piezoelectric nanogenerator based on self-poled PVDF/AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency. Adv. Energy Mater. 6(20), 1601016 (2016)

    Article  Google Scholar 

  8. Zeng, W., Tao, X.-M., Chen, S., Shang, S., Chan, H.L.W., Choy, S.H.: Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 6(9), 2631–2638 (2013)

    Article  CAS  Google Scholar 

  9. Fuh, Y.-K., Chen, P.-C., Ho, H.-C., Huang, Z.-M., Li, S.-C.: All-direction energy harvester based on nano/micro fibers as flexible and stretchable sensors for human motion detection. RSC Adv. 5(83), 67787 (2015)

    Article  CAS  Google Scholar 

  10. Hwang, Y.J., Choi, S., Kim, H.S.: Highly flexible all-nonwoven piezoelectric generators based on electrospun poly(vinylidene fluoride). Sens. Actuators A 300, 111672 (2019)

    Article  CAS  Google Scholar 

  11. Lund, A., Rundqvist, K., Nilsson, E., Yu, L., Hagström, B., Müller, C.: Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core. NPJ Flex. Electron. 2(1), 9 (2018)

    Google Scholar 

  12. Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V.: Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7(5), 1670–1679 (2014)

    Article  CAS  Google Scholar 

  13. Chang, C., Tran, V.H., Wang, J., Fuh, Y.-K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010)

    Article  CAS  Google Scholar 

  14. Pan, C.-T., Yen, C.-K., Wu, H.-C., Lin, L., Lu, Y.-S., Huang, J.C.-C., Kuo, S.-W.: Significant piezoelectric and energy harvesting enhancement of poly(vinylidene fluoride)/polypeptide fiber composites prepared through near-field electrospinning. J. Mater. Chem. A 3(13), 6835–6843 (2015)

    Article  CAS  Google Scholar 

  15. **g, Q., Kar-Narayan, S.: Nanostructured polymer-based piezoelectric and triboelectric materials and devices for energy harvesting applications. J. Phys. D Appl. Phys. 51(30), 303001 (2018)

    Article  Google Scholar 

  16. Shi, K., Sun, B., Huang, X., Jiang, P.: Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 52, 153–162 (2018)

    Article  CAS  Google Scholar 

  17. Ghosh, S.K., Biswas, A., Sen, S., Das, C., Henkel, K., Schmeisser, D., Mandal, D.: Yb3+ assisted self-polarized PVDF based ferroelectretic nanogenerator: a facile strategy of highly efficient mechanical energy harvester fabrication. Nano Energy 30, 621–629 (2016)

    Article  CAS  Google Scholar 

  18. Sultana, A., Alam, M.M., Ghosh, S.K., Middya, T.R., Mandal, D.: Energy harvesting and self-powered microphone application on multifunctional inorganic-organic hybrid nanogenerator. Energy 166, 963–971 (2019)

    Article  CAS  Google Scholar 

  19. Alam, M.M., Ghosh, S.K., Sarkar, D., Sen, S., Mandal, D.: Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput. Nanotechnology 28(1), 015503 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Mokhtari .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mokhtari, F. (2022). Conclusions and Future Works. In: Self-Powered Smart Fabrics for Wearable Technologies. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-031-06481-4_6

Download citation

Publish with us

Policies and ethics

Navigation