Introduction and Literature Review

  • Chapter
  • First Online:
Self-Powered Smart Fabrics for Wearable Technologies

Part of the book series: Springer Theses ((Springer Theses))

  • 304 Accesses

Abstract

Recent developments in miniaturized electronic devices with sophisticated computational capabilities and remarkably low power communication technologies involve a tendency toward powering these devices with long cycle life, high energy efficiency, fast and cheap production and lightweight power sources. Integration of piezoelectric materials and novel fabrication techniques with conventional textile processes established the emergence of a wearable technology field which can fulfill this purpose. Mechanical energy harvesters are required for multiple applications such as structural health monitoring systems, self-powered wireless sensors, and harvesting energy from body movements inexpensively. Among the variety of materials exhibiting piezoelectricity, polymers are more considered due to their many excellent properties desirable in flexible piezoelectric generators. Hence, fiber-based electronic devices have the best features for human garments such as flexibility, stretchability, permeability and lightweight, and they are ideal interface platform options between the environment, electronic devices and human body. Hence, this chapter starts with the fundamentals of wearable technology and materials involved and then reviews recent developments in fiber-based self-powered systems and sensors with the special focus on the piezoelectric poly(vinylidene fluoride) polymer and barium titanium oxide ceramic. In addition, a number of strategies that may improve the piezoelectric generator performance are summarized. Furthermore, the global textile market industry and the high-performance end-user such as washability and durability were reviewed. Potential difficulties, challenges and opportunities in the field of fiber-based energy generators are also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 166.39
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 166.39
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shirvanimoghaddam, M., Shirvanimoghaddam, K., Abolhasani, M.M., Farhangi, M., Barsari, V.Z., Liu, H., Dohler, M., Naebe, M.: Towards a green and self-powered internet of things using piezoelectric energy harvesting. IEEE Access 7, 94533–94556 (2019)

    Article  Google Scholar 

  2. Dong, K., Peng, X., Wang, Z.L.: Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 0(0), 1902549

    Google Scholar 

  3. Narita, F., Fox, M.: A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv. Eng. Mater. 20(5), 1700743 (2018)

    Article  CAS  Google Scholar 

  4. Lund, A., Rundqvist, K., Nilsson, E., Yu, L., Hagström, B., Müller, C.: Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core. NPJ Flex. Electron. 2(1), 9 (2018)

    Google Scholar 

  5. Tao, X.: Study of fiber-based wearable energy systems. Acc. Chem. Res. 52(2), 307–315 (2019)

    Article  CAS  Google Scholar 

  6. Bouzelata, Y., Kurt, E., Uzun, Y., Chenni, R.: Mitigation of high harmonicity and design of a battery charger for a new piezoelectric wind energy harvester. Sens. Actuators A 273, 72–83 (2018)

    Article  CAS  Google Scholar 

  7. Gareh, S., Kok, B., Yee, M., Borhana, A.A., Alswed, S.: Optimization of the compression-based piezoelectric traffic model (CPTM) for road energy harvesting application. Int. J. Renew. Energy Res. (IJRER) 9(3), 1272–1282 (2019)

    Google Scholar 

  8. Chatterjee, P.P.: Integration of solar and wind energy to generate piezoelectric potential difference. J. Resour. Energy Dev. 16(1), 1–8 (2019)

    Article  Google Scholar 

  9. Elsheikh, A.H., Sharshir, S.W., Elaziz, M.A., Kabeel, A., Guilan, W., Haiou, Z.: Modeling of solar energy systems using artificial neural network: a comprehensive review. Sol. Energy 180, 622–639 (2019)

    Article  Google Scholar 

  10. Hanif, A., Diao, S., Pei, H., Li, Z., Sun, G.: Green lightweight laminated cementitious composite (LCC) for wind energy harvesting—a novel application of LCCs. Case Stud. Constr. Mater. 10, e00217 (2019)

    Google Scholar 

  11. Cansiz, M., Altinel, D., Kurt, G.K.: Efficiency in RF energy harvesting systems: a comprehensive review. Energy 174, 292–309 (2019)

    Google Scholar 

  12. Yuan, M., Cao, Z., Luo, J., Zhang, J., Chang, C.: An efficient low-frequency acoustic energy harvester. Sens. Actuators A 264, 84–89 (2017)

    Article  CAS  Google Scholar 

  13. Sultana, A., Alam, M.M., Middya, T.R., Mandal, D.: A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat. Appl. Energy 221, 299–307 (2018)

    Article  Google Scholar 

  14. Elmoughni, H.M., Menon, A.K., Wolfe, R.M.W., Yee, S.K.: A textile-integrated polymer thermoelectric generator for body heat harvesting. Adv. Mater. Technol. 4(7), 1800708 (2019)

    Article  CAS  Google Scholar 

  15. Wang, W., Xu, J., Zheng, H., Chen, F., Jenkins, K., Wu, Y., Wang, H., Zhang, W., Yang, R.: A spring-assisted hybrid triboelectric–electromagnetic nanogenerator for harvesting low-frequency vibration energy and creating a self-powered security system. Nanoscale 10(30), 14747–14754 (2018)

    Article  CAS  Google Scholar 

  16. Ryu, H., Yoon, H.-J., Kim, S.-W.: Hybrid energy harvesters: toward sustainable energy harvesting. Adv. Mater. 31(34), 1802898 (2019)

    Article  CAS  Google Scholar 

  17. Chatterjee, P., Bryant, M.: Aeroelastic-photovoltaic ribbons for integrated wind and solar energy harvesting. Smart Mater. Struct. 27(8), 08LT01 (2018)

    Google Scholar 

  18. Shi, B., Liu, Z., Zheng, Q., Meng, J., Ouyang, H., Zou, Y., Jiang, D., Qu, X., Yu, M., Zhao, L., Fan, Y., Wang, Z.L., Li, Z.: Body-integrated self-powered system for wearable and implantable applications. ACS Nano 13(5), 6017–6024 (2019)

    Article  CAS  Google Scholar 

  19. Siddiqui, S., Lee, H.B., Kim, D.-I., Duy, L.T., Hanif, A., Lee, N.-E.: An omnidirectionally stretchable piezoelectric nanogenerator based on hybrid nanofibers and carbon electrodes for multimodal straining and human kinematics energy harvesting. Adv. Energy Mater. 8(2), 1701520 (2018)

    Article  CAS  Google Scholar 

  20. Zhang, M., Gao, T., Wang, J., Liao, J., Qiu, Y., Yang, Q., Xue, H., Shi, Z., Zhao, Y., **ong, Z., Chen, L.: A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy 13, 298–305 (2015)

    Article  CAS  Google Scholar 

  21. Huang, L., Lin, S., Xu, Z., Zhou, H., Duan, J., Hu, B., Zhou, J.: Fiber-based energy conversion devices for human-body energy harvesting. Adv. Mater. 0(0), 1902034

    Google Scholar 

  22. Fernández-Caramés, T.M., Fraga-Lamas, P.: Towards the Internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics 7(12), 405 (2018)

    Article  Google Scholar 

  23. He, T., Shi, Q., Wang, H., Wen, F., Chen, T., Ouyang, J., Lee, C.: Beyond energy harvesting—multi-functional triboelectric nanosensors on a textile. Nano Energy 57, 338–352 (2019)

    Article  CAS  Google Scholar 

  24. Kim, J., Campbell, A.S., de Ávila, B.E.-F., Wang, J.: Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 1 (2019)

    Google Scholar 

  25. Torah, R., Lawrie-Ashton, J., Li, Y., Arumugam, S., Sodano, H.A., Beeby, S.: Energy-harvesting materials for smart fabrics and textiles. MRS Bull. 43(3), 214–219 (2018)

    Article  CAS  Google Scholar 

  26. Memarian, F., Rahmani, S., Yousefzadeh, M., Latifi, M.: Wearable technologies in sportswear. In: Materials in Sports Equipment, pp. 123–160. Elsevier (2019)

    Google Scholar 

  27. Hazarika, A., Deka, B.K., Jeong, C., Park, Y.-B., Park, H.W.: Biomechanical energy-harvesting wearable textile-based personal thermal management device containing epitaxially grown aligned Ag-tipped-NixCo1−xSe nanowires/reduced graphene oxide. Adv. Funct. Mater. 29(31), 1903144 (2019)

    Article  CAS  Google Scholar 

  28. Ji, S.H., Cho, Y.-S., Yun, J.S.: Wearable core-shell piezoelectric nanofiber yarns for body movement energy harvesting. Nanomaterials 9(4), 555 (2019)

    Article  CAS  Google Scholar 

  29. Liu, J., Gu, L., Cui, N., Bai, S., Liu, S., Xu, Q., Qin, Y., Yang, R., Zhou, F.: Core-shell fiber-based 2D woven triboelectric nanogenerator for effective motion energy harvesting. Nanoscale Res. Lett. 14(1), 311 (2019)

    Article  CAS  Google Scholar 

  30. Kim, K.N., Chun, J., Kim, J.W., Lee, K.Y., Park, J.-U., Kim, S.-W., Wang, Z.L., Baik, J.M.: Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9(6), 6394–6400 (2015)

    Article  CAS  Google Scholar 

  31. Dong, K., Deng, J., Zi, Y., Wang, Y.C., Xu, C., Zou, H., Ding, W., Dai, Y., Gu, B., Sun, B.: 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 29(38), 1702648 (2017)

    Article  CAS  Google Scholar 

  32. Wu, Q., Hu, J.: A novel design for a wearable thermoelectric generator based on 3D fabric structure. Smart Mater. Struct. 26(4), 045037 (2017)

    Article  Google Scholar 

  33. Proto, A., Vlach, K., Conforto, S., Kasik, V., Bibbo, D., Vala, D., Bernabucci, I., Penhaker, M., Schmid, M.: Using PVDF films as flexible piezoelectric generators for biomechanical energy harvesting. Lék. Tech. Clin. Technol. 47(1), 5–10 (2017)

    Google Scholar 

  34. Mokhtari, F., Shamshirsaz, M., Latifi, M., Asadi, S.: Comparative evaluation of piezoelectric response of electrospun PVDF (polyvinilydine fluoride) nanofiber with various additives for energy scavenging application. J. Text. Inst. 108(6), 906–914 (2017)

    Article  CAS  Google Scholar 

  35. Sabry, R.S., Hussein, A.D.: PVDF: ZnO/BaTiO3 as high out-put piezoelectric nanogenerator. Polym. Test. 79, 106001 (2019)

    Article  CAS  Google Scholar 

  36. Chen, T., Qiu, L., Yang, Z., Cai, Z., Ren, J., Li, H., Lin, H., Sun, X., Peng, H.: An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51(48), 11977–11980 (2012)

    Article  CAS  Google Scholar 

  37. Pu, X., Hu, W., Wang, Z.L.: Toward wearable self-charging power systems: the integration of energy-harvesting and storage devices. Small 14(1), 1702817 (2018)

    Article  CAS  Google Scholar 

  38. Han, S.A., Lee, J., Lin, J., Kim, S.-W., Kim, J.H.: Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy 57, 680–691 (2019)

    Article  CAS  Google Scholar 

  39. Lee, H., Roh, J.-S.: Wearable electromagnetic energy-harvesting textiles based on human walking. Text. Res. J. 89(13), 2532–2541 (2019)

    Article  CAS  Google Scholar 

  40. He, J., Qian, S., Niu, X., Zhang, N., Qian, J., Hou, X., Mu, J., Geng, W., Chou, X.: Piezoelectric-enhanced triboelectric nanogenerator fabric for biomechanical energy harvesting. Nano Energy 64, 103933 (2019)

    Article  CAS  Google Scholar 

  41. Zhang, L., Su, C., Cheng, L., Cui, N., Gu, L., Qin, Y., Yang, R., Zhou, F.: Enhancing the performance of textile triboelectric nanogenerators with oblique microrod arrays for wearable energy harvesting. ACS Appl. Mater. Interfaces 11(30), 26824–26829 (2019)

    Article  CAS  Google Scholar 

  42. Song, G.J., Cho, J.Y., Kim, K.-B., Ahn, J.H., Song, Y., Hwang, W., Hong, S.D., Sung, T.H.: Development of a pavement block piezoelectric energy harvester for self-powered walkway applications. Appl. Energy 256, 113916 (2019)

    Article  Google Scholar 

  43. Lefeuvre, E., Audigier, D., Richard, C., Guyomar, D.: Buck-boost converter for sensorless power optimization of piezoelectric energy harvester. IEEE Trans. Power Electron. 22(5), 2018–2025 (2007)

    Article  Google Scholar 

  44. He, S., Dong, W., Guo, Y., Guan, L., **ao, H., Liu, H.: Piezoelectric thin film on glass fiber fabric with structural hierarchy: an approach to high-performance, superflexible, cost-effective, and large-scale nanogenerators. Nano Energy 59, 745–753 (2019)

    Article  CAS  Google Scholar 

  45. Gao, T., Liao, J., Wang, J., Qiu, Y., Yang, Q., Zhang, M., Zhao, Y., Qin, L., Xue, H., **ong, Z.: Highly oriented BaTiO3 film self-assembled using an interfacial strategy and its application as a flexible piezoelectric generator for wind energy harvesting. J. Mater. Chem. A 3(18), 9965–9971 (2015)

    Article  CAS  Google Scholar 

  46. Kumari, P., Rai, R., Sharma, S., Shandilya, M., Tiwari, A.: State-of-the-art of lead free ferroelectrics: a critical review. Adv. Mater. Lett 6(6), 453–484 (2015)

    Article  CAS  Google Scholar 

  47. Yan, J., Jeong, Y.G.: High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl. Mater. Interfaces 8(24), 15700–15709 (2016)

    Article  CAS  Google Scholar 

  48. Dahiya, A.S., Morini, F., Boubenia, S., Nadaud, K., Alquier, D., Poulin-Vittrant, G.: Organic/inorganic hybrid stretchable piezoelectric nanogenerators for self-powered wearable electronics. Adv. Mater. Technol. 3(2), 1700249 (2018)

    Article  CAS  Google Scholar 

  49. Hossain, S.M., Uddin, M.N.: Energy harvesting from human foot movement. Int. J. Ambient Energy 1–6 (2018)

    Google Scholar 

  50. **g, Q., Kar-Narayan, S.: Nanostructured polymer-based piezoelectric and triboelectric materials and devices for energy harvesting applications. J. Phys. D Appl. Phys. 51(30), 303001 (2018)

    Article  CAS  Google Scholar 

  51. Yan, J., Liu, M., Jeong, Y.G., Kang, W., Li, L., Zhao, Y., Deng, N., Cheng, B., Yang, G.: Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 56, 662–692 (2019)

    Article  CAS  Google Scholar 

  52. Anand, A., Bhatnagar, M.C.: Role of vertically aligned and randomly placed zinc oxide (ZnO) nanorods in PVDF matrix: used for energy harvesting. Mater. Today Energy 13, 293–301 (2019)

    Article  Google Scholar 

  53. Karumuthil, S.C., Rajeev, S.P., Varghese, S.: Poly(vinylidene fluoride-trifluoroethylene)-ZnO nanoparticle composites on a flexible poly(dimethylsiloxane) substrate for energy harvesting. ACS Appl. Nano Mater. 2(7), 4350–4357 (2019)

    Article  CAS  Google Scholar 

  54. Nguyen, D.-N., Moon, W.: Fabrication and characterization of a flexible PVDF fiber-based polymer composite for high-performance energy harvesting devices. J. Sens. Sci. Technol. 28(4), 205–215 (2019)

    Google Scholar 

  55. Alam, M.M., Sultana, A., Mandal, D.: Biomechanical and acoustic energy harvesting from TiO2 nanoparticle modulated PVDF nanofiber made high performance nanogenerator. ACS Appl. Energy Mater. 1(7), 3103–3112 (2018)

    Article  CAS  Google Scholar 

  56. Karan, S.K., Das, A.K., Bera, R., Paria, S., Maitra, A., Shrivastava, N.K., Khatua, B.B.: Effect of γ-PVDF on enhanced thermal conductivity and dielectric property of Fe-rGO incorporated PVDF based flexible nanocomposite film for efficient thermal management and energy storage applications. RSC Adv. 6(44), 37773–37783 (2016)

    Article  CAS  Google Scholar 

  57. Sarkar, S., Garain, S., Mandal, D., Chattopadhyay, K.: Electro-active phase formation in PVDF–BiVO4 flexible nanocomposite films for high energy density storage application. RSC Adv. 4(89), 48220–48227 (2014)

    Article  CAS  Google Scholar 

  58. De Freitas, R.L.B., Sakamoto, W.K., Freitas, L.P.S., Castro, F., Lima Filho, A.P., Kitano, C., De Carvalho, A.A.: Characterization of PZT/PVDF composite film as functional material. IEEE Sens. J. 18(12), 5067–5072 (2018)

    Article  Google Scholar 

  59. Tabhane, G.H., Giripunje, S.M., Kondawar, S.B.: Intensifying energy density, dielectric and mechanical properties of electroactive β-PVDF/f-BTO nanocomposites. Physica B 571, 149–161 (2019)

    Article  CAS  Google Scholar 

  60. Anand, A., Bhatnagar, M.C.: Effect of sodium niobate (NaNbO3) nanorods on β-phase enhancement in polyvinylidene fluoride (PVDF) polymer. Mater. Res. Express (2018)

    Google Scholar 

  61. Singh, H.H., Singh, S., Khare, N.: Enhanced β-phase in PVDF polymer nanocomposite and its application for nanogenerator. Polym. Adv. Technol. 29(1), 143–150 (2018)

    Article  CAS  Google Scholar 

  62. Bodkhe, S., Turcot, G., Gosselin, F.P., Therriault, D.: One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interfaces 9(24), 20833–20842 (2017)

    Article  CAS  Google Scholar 

  63. Kim, K.M., Park, N.-G., Ryu, K.S., Chang, S.H.: Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods. Electrochim. Acta 51(26), 5636–5644 (2006)

    Article  CAS  Google Scholar 

  64. Bairagi, S., Ali, S.W.: A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre. Eur. Polymer J. 116, 554–561 (2019)

    Article  CAS  Google Scholar 

  65. Mi, H.-Y., **g, X., Zheng, Q., Fang, L., Huang, H.-X., Turng, L.-S., Gong, S.: High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy 48, 327–336 (2018)

    Article  CAS  Google Scholar 

  66. Harstad, S., D’Souza, N., Soin, N., El-Gendy, A.A., Gupta, S., Pecharsky, V.K., Shah, T., Siores, E., Hadimani, R.L.: Enhancement of β-phase in PVDF films embedded with ferromagnetic Gd5Si4 nanoparticles for piezoelectric energy harvesting. AIP Adv. 7(5), 056411 (2017)

    Google Scholar 

  67. Ponnamma, D., Aljarod, O., Parangusan, H., Al-Maadeed, M.A.A.: Electrospun nanofibers of PVDF-HFP composites containing magnetic nickel ferrite for energy harvesting application. Mater. Chem. Phys. 122257 (2019)

    Google Scholar 

  68. Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q., Zhu, M.: Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14, 226–235 (2015)

    Article  CAS  Google Scholar 

  69. Hofmann, P., Walch, A., Dinkelmann, A., Selvarayan, S.K., Gresser, G.T.: Woven piezoelectric sensors as part of the textile reinforcement of fiber reinforced plastics. Compos. A Appl. Sci. Manuf. 116, 79–86 (2019)

    Article  CAS  Google Scholar 

  70. Talbourdet, A., Rault, F., Lemort, G., Cochrane, C., Devaux, E., Campagne, C.: 3D interlock design 100% PVDF piezoelectric to improve energy harvesting. Smart Mater. Struct. 27(7), 075010 (2018)

    Article  Google Scholar 

  71. Mokhtari, F., Foroughi, J., Zheng, T., Cheng, Z., Spinks, G.M.: Triaxial braided piezo fiber energy harvesters for self-powered wearable technologies. J. Mater. Chem. A 7(14), 8245–8257 (2019)

    Article  CAS  Google Scholar 

  72. Baniasadi, M., Huang, J., Xu, Z., Moreno, S., Yang, X., Chang, J., Quevedo-Lopez, M.A., Naraghi, M., Minary-Jolandan, M.: High-performance coils and yarns of polymeric piezoelectric nanofibers. ACS Appl. Mater. Interfaces 7(9), 5358–5366 (2015)

    Article  CAS  Google Scholar 

  73. Gowthaman, S., Chidambaram, G.S., Rao, D.B.G., Subramya, H.V., Chandrasekhar, U.: A review on energy harvesting using 3D printed fabrics for wearable electronics. J. Inst. Eng. (India) Ser. C 99(4), 435–447 (2018)

    Google Scholar 

  74. Park, S., Kwon, Y., Sung, M., Lee, B.-S., Bae, J., Yu, W.-R.: Poling-free spinning process of manufacturing piezoelectric yarns for textile applications. Mater. Des. 179, 107889 (2019)

    Article  CAS  Google Scholar 

  75. Chai, Z., Zhang, N., Sun, P., Huang, Y., Zhao, C., Fan, H.J., Fan, X., Mai, W.: Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano 10(10), 9201–9207 (2016)

    Article  CAS  Google Scholar 

  76. Guo, Y., Zhang, X.-S., Wang, Y., Gong, W., Zhang, Q., Wang, H., Brugger, J.: All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 48, 152–160 (2018)

    Article  CAS  Google Scholar 

  77. Yu, A., Pu, X., Wen, R., Liu, M., Zhou, T., Zhang, K., Zhang, Y., Zhai, J., Hu, W., Wang, Z.L.: Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano 11(12), 12764–12771 (2017)

    Article  CAS  Google Scholar 

  78. Dong, K., Wang, Y.-C., Deng, J., Dai, Y., Zhang, S.L., Zou, H., Gu, B., Sun, B., Wang, Z.L.: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11(9), 9490–9499 (2017)

    Article  CAS  Google Scholar 

  79. Choi, A.Y., Lee, C.J., Park, J., Kim, D., Kim, Y.T.: Corrugated textile based triboelectric generator for wearable energy harvesting. Sci. Rep. 7, 45583 (2017)

    Article  CAS  Google Scholar 

  80. Matsouka, D., Vassiliadis, S., Bayramol, D.V.: Piezoelectric textile fibres for wearable energy harvesting systems. Mater. Res. Express 5(6), 065508 (2018)

    Article  CAS  Google Scholar 

  81. Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V.: Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7(5), 1670–1679 (2014)

    Article  CAS  Google Scholar 

  82. Heo, J.S., Eom, J., Kim, Y.-H., Park, S.K.: Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small 14(3), 1703034 (2018)

    Article  CAS  Google Scholar 

  83. Bahadir, S.K., Sahin, U.K.: A wearable heating system with a controllable e-textile-based thermal panel. Wearable Technol. 175 (2018)

    Google Scholar 

  84. Yun, Y.J., Hong, W.G., Kim, D.Y., Kim, H.J., Jun, Y., Lee, H.-K.: E-textile gas sensors composed of molybdenum disulfide and reduced graphene oxide for high response and reliability. Sens. Actuators B Chem. 248, 829–835 (2017)

    Article  CAS  Google Scholar 

  85. Gonçalves, C., Ferreira da Silva, A., Gomes, J., Simoes, R.: Wearable E-textile technologies: a review on sensors, actuators and control elements. Inventions 3(1), 14 (2018)

    Google Scholar 

  86. Ghahremani Honarvar, M., Latifi, M.: Overview of wearable electronics and smart textiles. J. Text. Inst. 108(4), 631–652 (2017)

    Article  Google Scholar 

  87. Wu, W., Haick, H.: Materials and wearable devices for autonomous monitoring of physiological markers. Adv. Mater. 30(41), 1705024 (2018)

    Article  CAS  Google Scholar 

  88. Schneegass, S., Amft, O.: Smart Textiles. Springer (2017)

    Google Scholar 

  89. Aroganam, G., Manivannan, N., Harrison, D.: Review on wearable technology sensors used in consumer sport applications. Sensors 19(9), 1983 (2019)

    Article  Google Scholar 

  90. Kubley, A., Chauhan, D., Kanakaraj, S.N., Shanov, V., Xu, C., Chen, R., Ng, V., Bell, G., Verma, P., Hou, X., Chitranshi, M., Pujari, A., Schulz, M.J.: Smart textiles and wearable technology innovation with carbon nanotube technology. In: Schulz, M.J., Shanov, V., Yin, Z., Cahay, M. (eds) Nanotube Superfiber Materials, 2nd edn., pp. 263–311. William Andrew Publishing (2019) (Chapter 12)

    Google Scholar 

  91. Trung, T.Q., Lee, N.-E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016)

    Article  CAS  Google Scholar 

  92. Dehghani, M., Dangelico, R.M.: Smart wearable technologies: current status and market orientation through a patent analysis. In: 2017 IEEE International Conference on Industrial Technology (ICIT), pp. 1570–1575, 22–25 Mar 2017 (2017)

    Google Scholar 

  93. Hughes-Riley, T., Dias, T., Cork, C.: A historical review of the development of electronic textiles. Fibers 6(2), 34 (2018)

    Article  CAS  Google Scholar 

  94. Sharapov, V.: General information about piezoelectric sensors. In: Piezoceramic Sensors, pp. 1–24. Springer (2011)

    Google Scholar 

  95. Stoppa, M., Chiolerio, A.: Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014)

    Google Scholar 

  96. Syduzzaman, M., Patwary, S.U., Farhana, K., Ahmed, S.: Smart textiles and nano-technology: a general overview. J. Text. Sci. Eng 5, 1000181 (2015)

    Google Scholar 

  97. Dominique, P., Crego, P.: Wearables, Smart Textiles and Smart Apparel. Elsevier (2018)

    Google Scholar 

  98. Park, S., Chung, K., Jayaraman, S.: Wearables: fundamentals, advancements, and a roadmap for the future. In: Sazonov, E., Neuman, M.R. (eds.) Wearable Sensors, pp. 1–23. Academic Press, Oxford (2014) (Chapter 1.1)

    Google Scholar 

  99. Persson, N.-K., Martinez, J.G., Zhong, Y., Maziz, A., Jager, E.W.H.: Actuating textiles: next generation of smart textiles. Adv. Mater. Technol. 3(10), 1700397 (2018)

    Article  CAS  Google Scholar 

  100. Koncar, V.: Smart Textiles for in Situ Monitoring of Composites. Woodhead Publishing (2018)

    Google Scholar 

  101. Kongahage, D., Foroughi, J.: Actuator materials: review on recent advances and future outlook for smart textiles. Fibers 7(3), 21 (2019)

    Article  CAS  Google Scholar 

  102. Tebyetekerwa, M., Marriam, I., Xu, Z., Yang, S., Zhang, H., Zabihi, F., Jose, R., Peng, S., Zhu, M., Ramakrishna, S.: Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy Environ. Sci. 12(7), 2148–2160 (2019)

    Article  Google Scholar 

  103. Schneegass, S., Amft, O.: Introduction to smart textiles. In: Schneegass, S., Amft, O. (eds.) Smart Textiles: Fundamentals, Design, and Interaction, pp. 1–15. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  104. Paul, R.: High Performance Technical Textiles. Wiley (2019)

    Google Scholar 

  105. Koncar, V.: Smart Textiles and Their Applications. Woodhead Publishing (2016)

    Google Scholar 

  106. Wang, L., Fu, X., He, J., Shi, X., Chen, T., Chen, P., Wang, B., Peng, H.: Application challenges in fiber and textile electronics. Adv. Mater. 0(0), 1901971

    Google Scholar 

  107. Yilmaz, N.D.: Smart Textiles: Wearable Nanotechnology. Wiley (2018)

    Google Scholar 

  108. Wright, R., Keith, L.: Wearable technology: if the tech fits, wear it. J. Electron. Resourc. Med. Libr. 11(4), 204–216 (2014)

    Article  Google Scholar 

  109. Shin, Y.-E., Lee, J.-E., Park, Y., Hwang, S.-H., Chae, H.G., Ko, H.: Sewing machine stitching of polyvinylidene fluoride fibers: programmable textile patterns for wearable triboelectric sensors. J. Mater. Chem. A 6(45), 22879–22888 (2018)

    Article  CAS  Google Scholar 

  110. Ramasamy, S., Balan, A.: Wearable sensors for ECG measurement: a review. Sens. Rev. 38(4), 412–419 (2018)

    Article  Google Scholar 

  111. Castano, L.M., Flatau, A.B.: Smart fabric sensors and e-textile technologies: a review. Smart Mater. Struct. 23(5), 053001 (2014)

    Article  CAS  Google Scholar 

  112. Memarian, F., Rahmani, S., Yousefzadeh, M., Latifi, M.: Wearable technologies in sportswear. In: Subic, A. (ed.) Materials in Sports Equipment, 2nd edn., pp. 123–160. Woodhead Publishing (2019) (Chapter 4)

    Google Scholar 

  113. Shi, J., Liu, S., Zhang, L., Yang, B., Shu, L., Yang, Y., Ren, M., Wang, Y., Chen, J., Chen, W., Chai, Y., Tao, X.: Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 0(0), 1901958

    Google Scholar 

  114. Li, Z., Zhu, M., Qiu, Q., Yu, J., Ding, B.: Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53, 726–733 (2018)

    Article  CAS  Google Scholar 

  115. Michael, A., Tehrani, K., Wearable Technology and Wearable Devices: Everything You Need to Know (2014). http://www.wearabledevices.com/what-is-a-wearable-device/. Accessed 27 Aug 2017 [WebCite Cache ID 6t1sQoa7o]

  116. Teferra, M.N., Kourbelis, C., Newman, P., Ramos, J.S., Hobbs, D., Clark, R.A., Reynolds, K.J.: Electronic textile electrocardiogram monitoring in cardiac patients: a sco** review protocol. JBI Database Syst. Rev. Implement. Rep. 17(2), 147–156 (2019)

    Article  Google Scholar 

  117. Tsao, L., Li, L., Ma, L.: Human work and status evaluation based on wearable sensors in human factors and ergonomics: a review. IEEE Trans. Human Mach. Syst. 49(1), 72–84 (2019)

    Article  Google Scholar 

  118. Kwak, Y.H., Kim, J., Kim, K.: Sleep monitoring sensor using flexible metal strain gauge. Jpn. J. Appl. Phys. 57(5S), 05GD03 (2018)

    Google Scholar 

  119. Halson, S.L.: Sleep Monitoring in Athletes: Motivation, Methods, Miscalculations and Why it Matters. Sports Medicine (2019)

    Google Scholar 

  120. Pagola, J., Juega, J., Francisco-Pascual, J., Moya, A., Sanchis, M., Bustamante, A., Penalba, A., Usero, M., Cortijo, E., Arenillas, J.F., Calleja, A.I., Sandin-Fuentes, M., Rubio, J., Mancha, F., Escudero-Martinez, I., Moniche, F., de Torres, R., Pérez-Sánchez, S., González-Matos, C.E., Vega, Á., Pedrote, A.A., Arana-Rueda, E., Montaner, J., Molina, C.A., Pagola, J., Juega, J., Francisco-Pascual, J., Moya, A., Sanchis, M., Bustamante, A., Penalba, A., Usero, M., Cortijo, E., Arenillas, J.F., Calleja, A.I., Sandin-Fuentes, M., Rubio, J., Mancha, F., Escudero-Martinez, I., Moniche, F., de Torres, R., Eichau, S., González-Matos, C.E., Vega, Á., Pedrote, A.A., Arana-Rueda, E., Montaner, J., Molina, C.A., Muchada, M., Rodriguez-Luna, D., Rodriguez, N., Sanjuan, E., Rubiera, M., Boned, S., Ribó, M., Montiel, E., Beato-Coelho, J., González Alujas, T., Evangelista, A.: Yield of atrial fibrillation detection with textile wearable holter from the acute phase of stroke: pilot study of crypto-AF registry. Int. J. Cardiol. 251, 45–50 (2018)

    Article  Google Scholar 

  121. Li, J., Ma, Q., Chan, A.H.S., Man, S.S.: Health monitoring through wearable technologies for older adults: smart wearables acceptance model. Appl. Ergon. 75, 162–169 (2019)

    Article  Google Scholar 

  122. **, H., Huynh, T.-P., Haick, H.: Self-healable sensors based nanoparticles for detecting physiological markers via skin and breath: toward disease prevention via wearable devices. Nano Lett. 16(7), 4194–4202 (2016)

    Article  CAS  Google Scholar 

  123. Awolusi, I., Marks, E., Hallowell, M.: Wearable technology for personalized construction safety monitoring and trending: review of applicable devices. Autom. Constr. 85, 96–106 (2018)

    Article  Google Scholar 

  124. Gilshteyn, E.P., Amanbaev, D., Silibin, M.V., Sysa, A., Kondrashov, V.A., Anisimov, A.S., Kallio, T., Nasibulin, A.G.: Flexible self-powered piezo-supercapacitor system for wearable electronics. Nanotechnology 29(32), 325501 (2018)

    Article  CAS  Google Scholar 

  125. Proto, A., Peter, L., Cerny, M., Penhaker, M., Bibbo, D., Conforto, S., Schmid, M.: Human body energy harvesting solutions for wearable technologies. In: 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–5, 17–20 Sept 2018 (2018)

    Google Scholar 

  126. Starliper, N., Mohammadzadeh, F., Songkakul, T., Hernandez, M., Bozkurt, A., Lobaton, E.: Activity-aware wearable system for power-efficient prediction of physiological responses. Sensors 19(3), 441 (2019)

    Article  Google Scholar 

  127. Khan, M.B., Kim, D.H., Han, J.H., Saif, H., Lee, H., Lee, Y., Kim, M., Jang, E., Hong, S.K., Joe, D.J., Lee, T.-I., Kim, T.-S., Lee, K.J., Lee, Y.: Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit. Nano Energy 58, 211–219 (2019)

    Article  CAS  Google Scholar 

  128. Elahi, H., Eugeni, M., Gaudenzi, P.: A review on mechanisms for piezoelectric-based energy harvesters. Energies 11(7), 1850 (2018)

    Article  Google Scholar 

  129. Izadgoshasb, I., Lim, Y.Y., Lake, N., Tang, L., Padilla, R.V., Kashiwao, T.: Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking. Energy Convers. Manage. 161, 66–73 (2018)

    Article  Google Scholar 

  130. Jeong, S.Y., Hwang, W.S., Cho, J.Y., Jeong, J.C., Ahn, J.H., Kim, K.B., Hong, S.D., Song, G.J., Jeon, D.H., Sung, T.H.: Piezoelectric device operating as sensor and harvester to drive switching circuit in LED shoes. Energy 177, 87–93 (2019)

    Article  Google Scholar 

  131. Chou, X., Zhu, J., Qian, S., Niu, X., Qian, J., Hou, X., Mu, J., Geng, W., Cho, J., He, J., Xue, C.: All-in-one filler-elastomer-based high-performance stretchable piezoelectric nanogenerator for kinetic energy harvesting and self-powered motion monitoring. Nano Energy 53, 550–558 (2018)

    Article  CAS  Google Scholar 

  132. Ye, S., Cheng, C., Chen, X., Chen, X., Shao, J., Zhang, J., Hu, H., Tian, H., Li, X., Ma, L., Jia, W.: High-performance piezoelectric nanogenerator based on microstructured P(VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space. Nano Energy 60, 701–714 (2019)

    Article  CAS  Google Scholar 

  133. Balpande, S.S., Kalambe, J., Pande, R.S.: Vibration energy harvester driven wearable biomedical diagnostic system. In: 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 448–451. IEEE (2018)

    Google Scholar 

  134. Huynh, T.P., Haick, H.: Autonomous flexible sensors for health monitoring. Adv. Mater. 30(50), 1802337 (2018)

    Article  CAS  Google Scholar 

  135. Kim, M.-O., Pyo, S., Oh, Y., Kang, Y., Cho, K.-H., Choi, J., Kim, J.: Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor. Smart Mater. Struct. 27(3), 035001 (2018)

    Article  Google Scholar 

  136. Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S.: Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014)

    Article  CAS  Google Scholar 

  137. Yang, J.-H., Cho, H.-S., Park, S.-H., Song, S.-H., Yun, K.-S., Lee, J.H.: Effect of garment design on piezoelectricity harvesting from joint movement. Smart Mater. Struct. 25(3), 035012 (2016)

    Article  CAS  Google Scholar 

  138. Jung, W.-S., Lee, M.-J., Kang, M.-G., Moon, H.G., Yoon, S.-J., Baek, S.-H., Kang, C.-Y.: Powerful curved piezoelectric generator for wearable applications. Nano Energy 13, 174–181 (2015)

    Article  CAS  Google Scholar 

  139. Zhang, Y., Wang, T., Luo, A., Hu, Y., Li, X., Wang, F.: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Appl. Energy 212, 362–371 (2018)

    Article  Google Scholar 

  140. Tian, Z., He, J., Chen, X., Wen, T., Zhai, C., Zhang, Z., Cho, J., Chou, X., Xue, C.: Core–shell coaxially structured triboelectric nanogenerator for energy harvesting and motion sensing. RSC Adv. 8(6), 2950–2957 (2018)

    Article  CAS  Google Scholar 

  141. Jayathilaka, W.A.D.M., Qi, K., Qin, Y., Chinnappan, A., Serrano-García, W., Baskar, C., Wang, H., He, J., Cui, S., Thomas, S.W., Ramakrishna, S.: Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv. Mater. 31(7), 1805921 (2019)

    Article  CAS  Google Scholar 

  142. Varma, S.J., Sambath Kumar, K., Seal, S., Rajaraman, S., Thomas, J.: Fiber‐type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications. Adv. Sci. 5(9), 1800340 (2018)

    Google Scholar 

  143. Zhang, Q., Zhang, Z., Liang, Q., Gao, F., Yi, F., Ma, M., Liao, Q., Kang, Z., Zhang, Y.: Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics. Nano Energy 55, 151–163 (2019)

    Article  CAS  Google Scholar 

  144. Jeon, S.-B., Kim, W.-G., Park, S.-J., Tcho, I.-W., **, I.-K., Han, J.-K., Kim, D., Choi, Y.-K.: Self-powered wearable touchpad composed of all commercial fabrics utilizing a crossline array of triboelectric generators. Nano Energy 65, 103994 (2019)

    Article  CAS  Google Scholar 

  145. Zhao, X., Han, W., Zhao, C., Wang, S., Kong, F., Ji, X., Li, Z., Shen, X.: Fabrication of Transparent Paper-Based Flexible Thermoelectric Generator for Wearable Energy Harvester Using Modified Distributor Printing Technology. ACS Appl. Mater. Interfaces 11(10), 10301–10309 (2019)

    Article  CAS  Google Scholar 

  146. Zhang, X.-S., Su, M., Brugger, J., Kim, B.: Penciling a triboelectric nanogenerator on paper for autonomous power MEMS applications. Nano Energy 33, 393–401 (2017)

    Article  CAS  Google Scholar 

  147. Chen, J., Oh, S.K., Nabulsi, N., Johnson, H., Wang, W., Ryou, J.-H.: Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator. Nano Energy 57, 670–679 (2019)

    Article  CAS  Google Scholar 

  148. Hu, D., Yao, M., Fan, Y., Ma, C., Fan, M., Liu, M.: Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy 55, 288–304 (2019)

    Article  CAS  Google Scholar 

  149. Park, C.-S., Shin, Y.C., Jo, S.-H., Yoon, H., Choi, W., Youn, B.D., Kim, M.: Two-dimensional octagonal phononic crystals for highly dense piezoelectric energy harvesting. Nano Energy 57, 327–337 (2019)

    Article  CAS  Google Scholar 

  150. Mo, X., Zhou, H., Li, W., Xu, Z., Duan, J., Huang, L., Hu, B., Zhou, J.: Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 65, 104033 (2019)

    Article  CAS  Google Scholar 

  151. Krebs, F.C.: Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009)

    Article  CAS  Google Scholar 

  152. Shepelin, N.A., Lussini, V.C., Fox, P.J., Dicinoski, G.W., Glushenkov, A.M., Shapter, J.G., Ellis, A.V.: 3D printing of poly (vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators. MRS Commun. 9(1), 159–164 (2019)

    Article  CAS  Google Scholar 

  153. Lu, X., Qu, H., Skorobogatiy, M.: Piezoelectric microstructured fibers via drawing of multimaterial preforms. In: Energy Harvesting and Storage: Materials, Devices, and Applications VIII, International Society for Optics and Photonics, pp. 106630E (2018)

    Google Scholar 

  154. Lu, X., Qu, H., Skorobogatiy, M.: Piezoelectric micro-and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications. ACS Nano 11(2), 2103–2114 (2017)

    Article  CAS  Google Scholar 

  155. Xu, S., Liu, D., Zhang, Q., Fu, Q.: Electric field-induced alignment of nanofibrillated cellulose in thermoplastic polyurethane matrix. Compos. Sci. Technol. 156, 117–126 (2018)

    Article  CAS  Google Scholar 

  156. Mokhtari, F., Shamshirsaz, M., Latifi, M.: Investigation of β phase formation in piezoelectric response of electrospun polyvinylidene fluoride nanofibers: LiCl additive and increasing fibers tension. Polym. Eng. Sci. 56(1), 61 (2016)

    Article  CAS  Google Scholar 

  157. Zhou, Y., He, J., Wang, H., Qi, K., Nan, N., You, X., Shao, W., Wang, L., Ding, B., Cui, S.: Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor. Sci. Rep. 7(1), 12949 (2017)

    Article  CAS  Google Scholar 

  158. Vassiliadis, S.G., Matsouka, D.: Piezoelectricity: Organic and Inorganic Materials and Applications. BoD–Books on Demand (2018)

    Google Scholar 

  159. Sappati, K.K., Bhadra, S.: Piezoelectric polymer and paper substrates: a review. Sensors 18(11) (2018)

    Google Scholar 

  160. Wan, C., Bowen, C.R.: Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure. J. Mater. Chem. A 5(7), 3091–3128 (2017)

    Article  CAS  Google Scholar 

  161. Ramadan, K.S., Sameoto, D., Evoy, S.: A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23(3), 033001 (2014)

    Article  CAS  Google Scholar 

  162. Jeong, C.K., Cho, S.B., Han, J.H., Park, D.Y., Yang, S., Park, K.-I., Ryu, J., Sohn, H., Chung, Y.-C., Lee, K.J.: Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res. 10(2), 437–455 (2017)

    Article  CAS  Google Scholar 

  163. Batra, A.K., Aggarwal, M.D.: Pyroelectric Materials: Infrared Detectors, Particle Accelerators and Energy Harvesters. SPIE Press Bellingham, Washington, USA (2013)

    Google Scholar 

  164. Maiti, T., Saxena, M., Roy, P.: Double perovskite (Sr2B′B″O6) oxides for high-temperature thermoelectric power generation—a review. J. Mater. Res. 34(1), 107–125 (2019)

    Article  CAS  Google Scholar 

  165. Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7(1), 25–44 (2014)

    Article  CAS  Google Scholar 

  166. Uchino, K.: Piezoelectric energy harvesting systems—essentials to successful developments. Energ. Technol. 6(5), 829–848 (2018)

    Article  Google Scholar 

  167. Cao, J., Ling, M., Inman, D.J., Lin, J.: Generalized constitutive equations for piezo-actuated compliant mechanism. Smart Mater. Struct. 25(9), 095005 (2016)

    Article  Google Scholar 

  168. Deutz, D.B., Pascoe, J.-A., Schelen, B., Van Der Zwaag, S., De Leeuw, D.M., Groen, P.: Analysis and experimental validation of the figure of merit for piezoelectric energy harvesters. Mater. Horiz. 5(3), 444–453 (2018)

    Article  CAS  Google Scholar 

  169. Xu, R., Kim, S.: Figures of merits of piezoelectric materials in energy harvesters. In: Proceedings of the PowerMEMS, pp. 464–467 (2012)

    Google Scholar 

  170. Roscow, J.I., Pearce, H., Khanbareh, H., Kar-Narayan, S., Bowen, C.R.: Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systems. Eur. Phys. J. Spec. Top. 228(7), 1537–1554 (2019)

    Article  Google Scholar 

  171. Uchino, K.: Advanced Piezoelectric Materials: Science and Technology. Woodhead Publishing (2017)

    Google Scholar 

  172. Kim, H., Fernando, T., Li, M., Lin, Y., Tseng, T.-L.B.: Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater. 52(2), 197–206 (2018)

    Article  CAS  Google Scholar 

  173. Nawir, N.A.A., Basari, A.A., Saat, M.S.M., Yan, N.X., Hashimoto, S.: A review on piezoelectric energy harvester and its power conditioning circuit. ARPN J. (2018)

    Google Scholar 

  174. Stewart, M., Battrick, W., Cain, M.: Measuring Piezoelectric d33 Coefficents Using the Direct Method (2001)

    Google Scholar 

  175. Wang, Z., Miao, J.: Critical electrode size in measurement of d33 coefficient of films via spatial distribution of piezoelectric displacement. J. Phys. D Appl. Phys. 41(3), 035306 (2008)

    Article  CAS  Google Scholar 

  176. Kim, S.-B., Park, J.-H., Kim, S.-H., Ahn, H., Wikle, H.C., Kim, D.-J.: Modeling and evaluation of d33 mode piezoelectric energy harvesters. J. Micromech. Microeng. 22(10), 105013 (2012)

    Article  Google Scholar 

  177. Ani Melfa Roji, M., Jiji, G., Ajith Bosco Raj, T.: A retrospect on the role of piezoelectric nanogenerators in the development of the green world. RSC Adv. 7(53), 33642–33670 (2017)

    Google Scholar 

  178. Liu, Y., Wang, Q.: Ferroelectric polymers exhibiting negative longitudinal piezoelectric coefficient: progress and prospects. Adv. Sci. 7(6), 1902468 (2020)

    Article  CAS  Google Scholar 

  179. Satthiyaraju, M., Ramesh, T.: Effect of annealing treatment on PVDF nanofibers for mechanical energy harvesting applications. Mater. Res. Express 6(10), 105366 (2019)

    Article  CAS  Google Scholar 

  180. Liu, X., Deng, M., Wang, X.: Nanoscale domain imaging and local piezoelectric coefficient d33 studies of single piezoelectric polymeric nanofibers. Mater. Lett. 189, 66–69 (2017)

    Article  CAS  Google Scholar 

  181. Szewczyk, P.K., Gradys, A., Kim, S.K., Persano, L., Marzec, M., Kryshtal, A., Busolo, T., Toncelli, A., Pisignano, D., Bernasik, A., Kar-Narayan, S., Sajkiewicz, P., Stachewicz, U.: Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting. ACS Appl. Mater. Interfaces 12(11), 13575–13583 (2020)

    Article  CAS  Google Scholar 

  182. Ponraj, B., Bhimireddi, R., Varma, K.B.R.: Effect of nano- and micron-sized K0.5Na0.5NbO3 fillers on the dielectric and piezoelectric properties of PVDF composites. J. Adv. Ceram. 5(4), 308–320 (2016)

    Google Scholar 

  183. Ahmed, R., Mir, F., Banerjee, S.: A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity. Smart Mater. Struct. 26(8), 085031 (2017)

    Article  Google Scholar 

  184. Yuan, H., Lei, T., Qin, Y., Yang, R.: Flexible electronic skins based on piezoelectric nanogenerators and piezotronics. Nano Energy 59, 84–90 (2019)

    Article  CAS  Google Scholar 

  185. Han, B., Yu, X., Ou, J.: Challenges of self-sensing concrete. In: Han, B., Yu, X., Ou, J. (eds) Self-Sensing Concrete in Smart Structures, pp. 361–376. Butterworth-Heinemann (2014) (Chapter 11)

    Google Scholar 

  186. Invernizzi, F., Dulio, S., Patrini, M., Guizzetti, G., Mustarelli, P.: Energy harvesting from human motion: materials and techniques. Chem. Soc. Rev. 45(20), 5455–5473 (2016)

    Article  CAS  Google Scholar 

  187. Tian, Y., Li, G., Yi, Z., Liu, J., Yang, B.: A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film. J. Phys. Chem. Solids 117, 21–27 (2018)

    Article  CAS  Google Scholar 

  188. Jain, A., Prashanth, K.J., Sharma, A.K., Jain, A., Rashmi, P.N.: Dielectric and piezoelectric properties of PVDF/PZT composites: a review. Polym. Eng. Sci. 55(7), 1589–1616 (2015)

    Google Scholar 

  189. Sappati, K.K., Bhadra, S.: Piezoelectric polymer and paper substrates: a review. Sensors 18(11), 3605 (2018)

    Article  CAS  Google Scholar 

  190. Bae, J.-H., Chang, S.-H.: PVDF-based ferroelectric polymers and dielectric elastomers for sensor and actuator applications: a review. Funct. Compos. Struct. 1(1), 012003 (2019)

    Article  CAS  Google Scholar 

  191. Fu, J., Hou, Y., Zheng, M., Zhu, M.: Dielectric and energy harvesting properties of FeTiNbO6/PVDF composites with reinforced sandwich structure. Polym. Compos. 40(S1), E570–E578 (2019)

    Article  CAS  Google Scholar 

  192. Oh, W.J., Lim, H.S., Won, J.S., Lee, S.G.: Preparation of PVDF/PAR composites with piezoelectric properties by post-treatment. Polymers 10(12), 1333 (2018)

    Article  CAS  Google Scholar 

  193. Maruccio, C., Quaranta, G., Lorenzis, L.D., Monti, G.: Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge. Smart Mater. Struct. 25(8), 085040 (2016)

    Article  CAS  Google Scholar 

  194. Kim, K., Ha, M., Choi, B., Joo, S.H., Kang, H.S., Park, J.H., Gu, B., Park, C., Park, C., Kim, J., Kwak, S.K., Ko, H., **, J., Kang, S.J.: Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. Nano Energy 48, 275–283 (2018)

    Article  CAS  Google Scholar 

  195. Kim, M., Wu, Y.S., Kan, E.C., Fan, J.: Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications. Polymers 10(7), 745 (2018)

    Article  CAS  Google Scholar 

  196. Kim, S.-R., Yoo, J.-H., Cho, Y.S., Park, J.-W.: Flexible piezoelectric energy generators based on P(VDF-TrFE) nanofibers. Mater. Res. Express 6(8), 086311 (2019)

    Article  CAS  Google Scholar 

  197. Ren, X., Meng, N., Yan, H., Bilotti, E., Reece, M.J.: Remarkably enhanced polarisability and breakdown strength in PVDF-based interactive polymer blends for advanced energy storage applications. Polymer 168, 246–254 (2019)

    Article  CAS  Google Scholar 

  198. Martins, P., Lopes, A.C., Lanceros-Mendez, S.: Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014)

    Article  CAS  Google Scholar 

  199. Jeong, K., Kim, D.H., Chung, Y.S., Hwang, S.K., Hwang, H.Y., Kim, S.S.: Effect of processing parameters of the continuous wet spinning system on the crystal phase of PVDF fibers. J. Appl. Polym. Sci. 135(3), 45712 (2018)

    Article  CAS  Google Scholar 

  200. Teka, A., Bairagi, S., Shahadat, M., Joshi, M., Ziauddin Ahammad, S., Wazed Ali, S.: Poly(vinylidene fluoride) (PVDF)/potassium sodium niobate (KNN)–based nanofibrous web: a unique nanogenerator for renewable energy harvesting and investigating the role of KNN nanostructures. Polym. Adv. Technol. 29(9), 2537–2544 (2018)

    Article  CAS  Google Scholar 

  201. Kim, D.H., Hwang, H.Y., Kim, S.S.: Fabrication of PVDF film sensors for fatigue damage monitoring of single-lap adhesive joints. Compos. Struct. 207, 223–231 (2019)

    Article  Google Scholar 

  202. Teka, A., Bairagi, S., Shahadat, M., Joshi, M., Ahammad, S.Z., Ali, S.W.: Poly (vinylidene fluoride)(PVDF)/potassium sodium niobate (KNN)–based nanofibrous web: a unique nanogenerator for renewable energy harvesting and investigating the role of KNN nanostructures. Polym. Adv. Technol. 29(9), 2537–2544 (2018)

    Article  CAS  Google Scholar 

  203. Wu, L., **g, M., Liu, Y., Ning, H., Liu, X., Liu, S., Lin, L., Hu, N., Liu, L.: Power generation by PVDF-TrFE/graphene nanocomposite films. Compos. B Eng. 164, 703–709 (2019)

    Article  CAS  Google Scholar 

  204. Ma, J., Zhang, Q., Lin, K., Zhou, L., Ni, Z.: Piezoelectric and optoelectronic properties of electrospinning hybrid PVDF and ZnO nanofibers. Mater. Res. Express 5(3), 035057 (2018)

    Article  CAS  Google Scholar 

  205. Hofmann, P., Walch, A., Dinkelmann, A., Selvarayan, S.K., Gresser, G.T.: Woven piezoelectric sensors as part of the textile reinforcement of fiber reinforced plastics. Compos. A 116, 79–86 (2019)

    Article  CAS  Google Scholar 

  206. Li, Z., Shen, J., Abdalla, I., Yu, J., Ding, B.: Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 36, 341–348 (2017)

    Article  CAS  Google Scholar 

  207. Li, Z., Zhu, M., Shen, J., Qiu, Q., Yu, J., Ding, B.: All-fiber structured electronic skin with high elasticity and breathability. Adv. Func. Mater. 30(6), 1908411 (2020)

    Article  CAS  Google Scholar 

  208. Shen, J., Li, Z., Yu, J., Ding, B.: Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 40, 282–288 (2017)

    Article  CAS  Google Scholar 

  209. Mokhtari, F., Foroughi, J., Latifi, M.: Enhancing β crystal phase content in electrospun PVDF nanofibers. In: Energy Harvesting Properties of Electrospun Nanofibers, pp. 5-1–5-28. IOP Publishing (2019)

    Google Scholar 

  210. Ruan, L., Yao, X., Chang, Y., Zhou, L., Qin, G., Zhang, X.: Properties and applications of the β phase poly(vinylidene fluoride). Polymers 10(3), 228 (2018)

    Article  CAS  Google Scholar 

  211. Karimi, S., Ghaee, A., Barzin, J.: Preparation and characterization of a piezoelectric poly (vinylidene fluoride)/nanohydroxyapatite scaffold capable of naproxen delivery. Eur. Polymer J. 112, 442–451 (2019)

    Article  CAS  Google Scholar 

  212. Yu, S.M., Oh, H.J., Hwang, S.-K., Chung, Y.-S., Kim, S.-S.: The Effects of Post-Treatments for Wet Spun PVDF on the Piezoelectric Property, p. 26 (2013)

    Google Scholar 

  213. De Neef, A., Samuel, C., Stoclet, G., Rguiti, M., Courtois, C., Dubois, P., Soulestin, J., Raquez, J.-M.: Processing of PVDF-based electroactive/ferroelectric films: importance of PMMA and cooling rate from the melt state on the crystallization of PVDF beta-crystals. Soft Matter 14(22), 4591–4602 (2018)

    Article  Google Scholar 

  214. Divya, S., Hemalatha, J.: Study on the enhancement of ferroelectric β phase in P(VDF-HFP) films under heating and poling conditions. Eur. Polymer J. 88, 136–147 (2017)

    Article  CAS  Google Scholar 

  215. Lee, H.J., Hong, T.M., Lim, S.C., Won, J.S., Lee, S.G.: Preparation and characterization of PVDF/PU bicomponent nanofiber by electrospinning. Text. Sci. Eng. 52(2), 88–96 (2015)

    Article  CAS  Google Scholar 

  216. Parangusan, H., Ponnamma, D., Al-Maadeed, M.A.A.: Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci. Rep. 8(1), 754 (2018)

    Article  CAS  Google Scholar 

  217. Naik, R., Somasekhara Rao, T.: Self-powered flexible piezoelectric nanogenerator made of poly (vinylidene fluoride)/Zirconium oxide nanocomposite. Mater. Res. Express 6(11), 115330 (2019)

    Google Scholar 

  218. Dhatarwal, P., Sengwa, R.J.: Polymer compositional ratio-dependent morphology, crystallinity, dielectric dispersion, structural dynamics, and electrical conductivity of PVDF/PEO blend films. Macromol. Res. 27(10), 1009–1023 (2019)

    Article  CAS  Google Scholar 

  219. Rajesh, P.S.M., Bodkhe, S., Kamle, S., Verma, V.: Enhancing beta-phase in PVDF through physicochemical modification of cellulose. Electron. Mater. Lett. 10(1), 315–319 (2014)

    Article  CAS  Google Scholar 

  220. Chen, J.-J., Li, Y., Zheng, X.-M., He, F.-A., Lam, K.-H.: Enhancement in electroactive crystalline phase and dielectric performance of novel PEG-graphene/PVDF composites. Appl. Surf. Sci. 448, 320–330 (2018)

    Article  CAS  Google Scholar 

  221. Bhavanasi, V., Kumar, V., Parida, K., Wang, J., Lee, P.S.: Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl. Mater. Interfaces 8(1), 521–529 (2016)

    Article  CAS  Google Scholar 

  222. Lee, J., Lim, S.: Polarization behavior of polyvinylidene fluoride films with the addition of reduced graphene oxide. J. Ind. Eng. Chem. 67, 478–485 (2018)

    Article  CAS  Google Scholar 

  223. Mishra, S., Sahoo, R., Unnikrishnan, L., Ramadoss, A., Mohanty, S., Nayak, S.K.: Investigation of the electroactive phase content and dielectric behaviour of mechanically stretched PVDF-GO and PVDF-rGO composites. Mater. Res. Bull. 124, 110732 (2020)

    Article  CAS  Google Scholar 

  224. Singh, H.H., Singh, S., Khare, N.: Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal. Compos. Sci. Technol. 149, 127–133 (2017)

    Article  CAS  Google Scholar 

  225. Kabir, E., Khatun, M., Nasrin, L., Raihan, M.J., Rahman, M.: Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites. J. Phys. D Appl. Phys. 50(16), 163002 (2017)

    Article  CAS  Google Scholar 

  226. Zhu, M., Lou, M., Abdalla, I., Yu, J., Li, Z., Ding, B.: Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy 69, 104429 (2020)

    Article  CAS  Google Scholar 

  227. Lou, M., Abdalla, I., Zhu, M., Yu, J., Li, Z., Ding, B.: Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl. Mater. Interfaces 12(1), 1597–1605 (2020)

    Article  CAS  Google Scholar 

  228. Ren, J.-Y., Zhang, G., Li, Y., Lei, J., Zhu, L., Zhong, G.-J., Li, Z.-M.: Effect of ion-dipole interaction on the formation of polar extended-chain crystals in high pressure-crystallized poly(vinylidene fluoride). Polymer 158, 204–212 (2018)

    Article  CAS  Google Scholar 

  229. Yaqoob, U., Kim, H.C.: Enhancement in energy harvesting performances of piezoelectric nanogenerator by sandwiching electrostatic rGO layer between PVDF-BTO layers. In: 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 94–97, 22–26 Apr 2018 (2018)

    Google Scholar 

  230. Selvarajan, S., Alluri, N.R., Chandrasekhar, A., Kim, S.-J.: BaTiO3 nanoparticles as biomaterial film for self-powered glucose sensor application. Sens. Actuators B Chem. 234, 395–403 (2016)

    Article  CAS  Google Scholar 

  231. Sikarwar, S., Sonker, R.K., Shukla, A., Yadav, B.C.: Synthesis and investigation of cubical shaped barium titanate and its application as opto-electronic humidity sensor. J. Mater. Sci.: Mater. Electron. 29(15), 12951–12958 (2018)

    CAS  Google Scholar 

  232. Rusevich, L.L., Zvejnieks, G., Kotomin, E.A., Kržmanc, M.M., Meden, A., Kunej, S., Vlaicu, I.D.: Theoretical and experimental study of (Ba, Sr) TiO3 perovskite solid solutions and BaTiO3/SrTiO3 heterostructures. J. Phys. Chem. C 123(4) 2031–2036 (2019)

    Google Scholar 

  233. Mayeen, A., Kalarikkal, N.: Development of ceramic-controlled piezoelectric devices for biomedical. In: Fundamental Biomaterials: Ceramics, p. 47 (2018)

    Google Scholar 

  234. Choi, H.Y., Jeong, Y.G.: Microstructures and piezoelectric performance of eco-friendly composite films based on nanocellulose and barium titanate nanoparticle. Compos. B Eng. 168, 58–65 (2019)

    Article  CAS  Google Scholar 

  235. Jang, S.-M., Yang, S.C.: Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials. Nanotechnology 29(23), 235602 (2018)

    Article  CAS  Google Scholar 

  236. Zhou, B., Li, R., Cai, J., Xu, J., Zhao, Z., Pei, J.: Grain size effect on electric properties of novel BaTiO3/PVDF composite piezoelectric ceramics. Mater. Res. Express 5(9), 095510 (2018)

    Article  CAS  Google Scholar 

  237. Shihua, D., Tianxiu, S., **ao**g, Y., Guanghua, L.: Effect of grain size of BaTiO3 ceramics on dielectric properties. Ferroelectrics 402(1), 55–59 (2010)

    Article  CAS  Google Scholar 

  238. Hoshina, T., Takizawa, K., Li, J., Kasama, T., Kakemoto, H., Tsurumi, T.: Domain size effect on dielectric properties of barium titanate ceramics. Jpn. J. Appl. Phys. 47(9S), 7607 (2008)

    Article  CAS  Google Scholar 

  239. Dudem, B., Kim, D.H., Bharat, L.K., Yu, J.S.: Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting. Appl. Energy 230, 865–874 (2018)

    Article  CAS  Google Scholar 

  240. Baek, C., Yun, J.H., Wang, H.S., Wang, J.E., Park, H., Park, K.-I., Kim, D.K.: Enhanced output performance of a lead-free nanocomposite generator using BaTiO3 nanoparticles and nanowires filler. Appl. Surf. Sci. 429, 164–170 (2018)

    Article  CAS  Google Scholar 

  241. He, J., Wang, H., Su, Z., Guo, Y., Tian, X., Qu, Q., Lin, Y.-L.: Thermal conductivity and electrical insulation of epoxy composites with graphene-SiC nanowires and BaTiO3. Compos. A Appl. Sci. Manuf. 117, 287–298 (2019)

    Article  CAS  Google Scholar 

  242. Kim, H.S., Lee, D.W., Kim, D.H., Kong, D.S., Choi, J., Lee, M., Murillo, G., Jung, J.H.: Dominant role of young’s modulus for electric power generation in PVDF–BaTiO3 composite-based piezoelectric nanogenerator. Nanomaterials 8(10), 777 (2018)

    Article  CAS  Google Scholar 

  243. Shen, L., Gong, L., Chen, S., Zhan, S., Zhang, C., Shao, T.: Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane. Plasma Sci. Technol 20(6), 065510 (2018)

    Article  CAS  Google Scholar 

  244. Ma, J., Azhar, U., Zong, C., Zhang, Y., Xu, A., Zhai, C., Zhang, L., Zhang, S.: Core-shell structured PVDF@BT nanoparticles for dielectric materials: a novel composite to prove the dependence of dielectric properties on ferroelectric shell. Mater. Des. 164, 107556 (2019)

    Article  CAS  Google Scholar 

  245. Chilibon, I., Marat-Mendes, J.N.: Ferroelectric ceramics by sol–gel methods and applications: a review. J. Sol-Gel. Sci. Technol. 64(3), 571–611 (2012)

    Article  CAS  Google Scholar 

  246. Lu, J., Liang, X., Yu, W., Hu, S., Shen, S.: Temperature dependence of flexoelectric coefficient for bulk polymer polyvinylidene fluoride. J. Phys. D Appl. Phys. 52(7), 075302 (2018)

    Article  CAS  Google Scholar 

  247. Wu, J., BaTiO3-based piezoelectric materials. In: Advances in Lead-Free Piezoelectric Materials, pp. 247–299. Springer Singapore, Singapore (2018)

    Google Scholar 

  248. Ma, J.-P., Chen, X.-M., Ouyang, W.-Q., Wang, J., Li, H., Fang, J.-L.: Microstructure, dielectric, and energy storage properties of BaTiO3 ceramics prepared via cold sintering. Ceram. Int. 44(4), 4436–4441 (2018)

    Article  CAS  Google Scholar 

  249. Yamada, T., Matsuo, M.: Clothing pressure of knitted fabrics estimated in relation to tensile load under extension and recovery processes by simultaneous measurements. Text. Res. J. 79(11), 1021–1033 (2009)

    Article  CAS  Google Scholar 

  250. Kumar, A., Kumar, R., Jain, S.C., Vaish, R.: Vibration induced refrigeration and energy harvesting using piezoelectric materials: a finite element study. RSC Adv. 9(7), 3918–3926 (2019)

    Article  CAS  Google Scholar 

  251. Taneja, D.K., Varghese, A., Periasamy, C.: finite element method based performance analysis of piezoelectric materials for nanogenerator applications. In: 2018 Conference on Emerging Devices and Smart Systems (ICEDSS), pp. 102–105. IEEE (2018)

    Google Scholar 

  252. Asthana, P., Khanna, G.: Finite-element modeling of piezoelectric energy harvesters using lead-based and lead-free materials for voltage generation. J. Asian Ceram. Soc. 6(4), 394–400 (2018)

    Article  Google Scholar 

  253. Jung, W.-S., Lee, M., Baek, S.-H., Jung, I.K., Yoon, S.-J., Kang, C.-Y.: Structural approaches for enhancing output power of piezoelectric polyvinylidene fluoride generator. Nano Energy 22, 514–523 (2016)

    Article  CAS  Google Scholar 

  254. Sun, Y., Chen, J., Li, X., Lu, Y., Zhang, S., Cheng, Z.: Flexible piezoelectric energy harvester/sensor with high voltage output over wide temperature range. Nano Energy 61, 337–345 (2019)

    Article  CAS  Google Scholar 

  255. Liu, H., Zhong, J., Lee, C., Lee, S.-W., Lin, L.: A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev. 5(4), 041306 (2018)

    Article  CAS  Google Scholar 

  256. Song, S., Yun, K.-S.: Design and characterization of scalable woven piezoelectric energy harvester for wearable applications. Smart Mater. Struct. 24(4), 045008 (2015)

    Article  CAS  Google Scholar 

  257. Wang, W.-C., Wu, L.-Y., Chen, L.-W., Liu, C.-M.: Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal. Smart Mater. Struct. 19(4), 045016 (2010)

    Article  CAS  Google Scholar 

  258. Hu, P., Yan, L., Zhao, C., Zhang, Y., Niu, J.: Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property. Compos. Sci. Technol. 168, 327–335 (2018)

    Article  CAS  Google Scholar 

  259. Sankaran, S., Deshmukh, K., Ahamed, M.B., Pasha, S.K.: Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A Appl. Sci. Manufact. (2018)

    Google Scholar 

  260. Al-Gharabli, S., Kujawa, J., Mavukkandy, M.O., Agbaje, T.A., Hamad, E.M., Arafat, H.A.: Covalent surface entanglement of polyvinylidene fluoride membranes with carbon nanotubes. Eur. Polymer J. 100, 153–164 (2018)

    Article  CAS  Google Scholar 

  261. Zhao, B., Zhao, C., Hamidinejad, M., Wang, C., Li, R., Wang, S., Yasamin, K., Park, C.B.: Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. J. Mater. Chem. C 6(38), 10292–10300 (2018)

    Article  CAS  Google Scholar 

  262. Bian, Y., Zhang, Y., Sun, K., **, H., Dai, L., Shen, H.: A biomimetic vibration sensor using a symmetric electrodes metal core piezoelectric fiber. J. Intell. Mater. Syst. Struct. 29(6), 1015–1024 (2018)

    Article  CAS  Google Scholar 

  263. Sim, H.J., Choi, C., Lee, C.J., Kim, Y.T., Spinks, G.M., Lima, M.D., Baughman, R.H., Kim, S.J.: Flexible, stretchable and weavable piezoelectric fiber. Adv. Eng. Mater. 17(9), 1270–1275 (2015)

    Article  CAS  Google Scholar 

  264. Egusa, S., Wang, Z., Chocat, N., Ruff, Z.M., Stolyarov, A.M., Shemuly, D., Sorin, F., Rakich, P.T., Joannopoulos, J.D., Fink, Y.: Multimaterial piezoelectric fibres. Nat. Mater. 9(8), 643–648 (2010)

    Article  CAS  Google Scholar 

  265. Li, B., Zhang, F., Guan, S., Zheng, J., Xu, C.: Wearable piezoelectric device assembled by one-step continuous electrospinning. J. Mater. Chem. C 4(29), 6988–6995 (2016)

    Article  CAS  Google Scholar 

  266. Atalay, A., Atalay, O., Husain, M.D., Fernando, A., Potluri, P.: Piezofilm yarn sensor-integrated knitted fabric for healthcare applications. J. Ind. Text. 47(4), 505–521 (2017)

    Article  CAS  Google Scholar 

  267. Gao, H., Minh, P.T., Wang, H., Minko, S., Locklin, J., Nguyen, T., Sharma, S.: High-performance flexible yarn for wearable piezoelectric nanogenerators. Smart Mater. Struct. 27(9), 095018 (2018)

    Article  Google Scholar 

  268. Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self-powered nanowire devices. Nat. Nanotechnol. 5(5), 366–373 (2010)

    Article  CAS  Google Scholar 

  269. Ghosh, S.K., Mandal, D.: Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy 53, 245–257 (2018)

    Article  CAS  Google Scholar 

  270. Zeng, W., Tao, X.-M., Chen, S., Shang, S., Chan, H.L.W., Choy, S.H.: Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 6(9), 2631–2638 (2013)

    Article  CAS  Google Scholar 

  271. Nilsson, E., Lund, A., Jonasson, C., Johansson, C., Hagström, B.: Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sens. Actuators A 201, 477–486 (2013)

    Article  CAS  Google Scholar 

  272. Ahn, Y., Song, S., Yun, K.-S.: Woven flexible textile structure for wearable power-generating tactile sensor array. Smart Mater. Struct. 24(7), 075002 (2015)

    Article  CAS  Google Scholar 

  273. Karan, S.K., Bera, R., Paria, S., Das, A.K., Maiti, S., Maitra, A., Khatua, B.B.: An approach to design highly durable piezoelectric nanogenerator based on self-poled PVDF/AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency. Adv. Energy Mater. 6(20), 1601016 (2016)

    Article  CAS  Google Scholar 

  274. Yang, E., Xu, Z., Chur, L.K., Behroozfar, A., Baniasadi, M., Moreno, S., Huang, J., Gilligan, J., Minary-Jolandan, M.: Nanofibrous smart fabrics from twisted yarns of electrospun piezopolymer. ACS Appl. Mater. Interfaces 9(28), 24220–24229 (2017)

    Article  CAS  Google Scholar 

  275. Fan, F.-R., Tian, Z.-Q., Lin Wang, Z.: Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012)

    Article  CAS  Google Scholar 

  276. Kim, W., Pyo, S., Kim, M.-O., Oh, Y., Kwon, D.-S., Kim, J.: Humidity-resistant triboelectric energy harvester using electrospun PVDF/PU nanofibers for flexibility and air permeability. Nanotechnology 30(27), 275401 (2019)

    Article  CAS  Google Scholar 

  277. Sim, H.J., Choi, C., Kim, S.H., Kim, K.M., Lee, C.J., Kim, Y.T., Lepró, X., Baughman, R.H., Kim, S.J.: Stretchable triboelectric fiber for self-powered kinematic sensing textile. Sci. Rep. 6, 35153 (2016)

    Article  CAS  Google Scholar 

  278. Yaqoob, U., Uddin, A.S.M.I., Chung, G.-S.: A novel tri-layer flexible piezoelectric nanogenerator based on surface-modified graphene and PVDF-BaTiO3 nanocomposites. Appl. Surf. Sci. 405, 420–426 (2017)

    Article  CAS  Google Scholar 

  279. Shen, Z.-Y., Luo, W.-Q., Li, Y.-M., Hu, Q.-G., Wang, Z.-M., Gu, X.-Y.: Electrical hetero-structure of Nd0.1Sr0.9TiO3 ceramic for energy storage applications. J. Mater. Sci. Mater. Electron. 24(2), 607–612 (2013)

    Google Scholar 

  280. Hao, Y.N., Wang, X.H., O’Brien, S., Lombardi, J., Li, L.T.: Flexible BaTiO3/PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density. J. Mater. Chem. C 3(37), 9740–9747 (2015)

    Article  CAS  Google Scholar 

  281. Yang, Y., Gao, Z.-S., Yang, M., Zheng, M.-S., Wang, D.-R., Zha, J.-W., Wen, Y.-Q., Dang, Z.-M.: Enhanced energy conversion efficiency in the surface modified BaTiO3 nanoparticles/polyurethane nanocomposites for potential dielectric elastomer generators. Nano Energy 59, 363–371 (2019)

    Article  CAS  Google Scholar 

  282. Patra, A., Pal, A., Sen, S.: Polyvinylpyrrolidone modified barium zirconate titanate /polyvinylidene fluoride nanocomposites as self-powered sensor. Ceram. Int. 44(10), 11196–11203 (2018)

    Article  CAS  Google Scholar 

  283. Lin, Z.-H., Yang, Y., Wu, J.M., Liu, Y., Zhang, F., Wang, Z.L.: BaTiO3 nanotubes-based flexible and transparent nanogenerators. J. Phys. Chem. Lett. 3(23), 3599–3604 (2012)

    Article  CAS  Google Scholar 

  284. Song, J., Yang, B., Zeng, W., Peng, Z., Lin, S., Li, J., Tao, X.: Highly flexible, large-area, and facile textile-based hybrid nanogenerator with cascaded piezoelectric and triboelectric units for mechanical energy harvesting. Adv. Mater. Technol. 3(6), 1800016 (2018)

    Article  CAS  Google Scholar 

  285. Lu, X., Qu, H., Skorobogatiy, M.: Piezoelectric micro- and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications. ACS Nano 11(2), 2103–2114 (2017)

    Article  CAS  Google Scholar 

  286. Siddiqui, S., Kim, D.-I., Roh, E., Duy, L.T., Trung, T.Q., Nguyen, M.T., Lee, N.-E.: A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system. Nano Energy 30, 434–442 (2016)

    Article  CAS  Google Scholar 

  287. Nunes-Pereira, J., Sencadas, V., Correia, V., Cardoso, V.F., Han, W., Rocha, J.G., Lanceros-Méndez, S.: Energy harvesting performance of BaTiO3/poly(vinylidene fluoride–trifluoroethylene) spin coated nanocomposites. Compos. B Eng. 72, 130–136 (2015)

    Article  CAS  Google Scholar 

  288. Mokhtari, F., Spinks, G.M., Fay, C., Cheng, Z., Raad, R., **, J., Foroughi, J.: Wearable electronic textiles from nanostructured piezoelectric fibers. Adv. Mater. Technol. n/a(n/a), 1900900

    Google Scholar 

  289. Zhao, Y., Liao, Q., Zhang, G., Zhang, Z., Liang, Q., Liao, X., Zhang, Y.: High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 11, 719–727 (2015)

    Article  CAS  Google Scholar 

  290. Hu, X., Yan, X., Gong, L., Wang, F., Xu, Y., Feng, L., Zhang, D., Jiang, Y.: Improved piezoelectric sensing performance of P(VDF–TrFE) nanofibers by utilizing BTO nanoparticles and penetrated electrodes. ACS Appl. Mater. Interfaces 11(7), 7379–7386 (2019)

    Article  CAS  Google Scholar 

  291. Lee, M., Chen, C.-Y., Wang, S., Cha, S.N., Park, Y.J., Kim, J.M., Chou, L.-J., Wang, Z.L.: A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 24(13), 1759–1764 (2012)

    Article  CAS  Google Scholar 

  292. Kim, D.H., Dudem, B., Yu, J.S.: High-performance flexible piezoelectric-assisted triboelectric hybrid nanogenerator via polydimethylsiloxane-encapsulated nanoflower-like ZnO composite films for scavenging energy from daily human activities. ACS Sustain. Chem. Eng. 6(7), 8525–8535 (2018)

    Article  CAS  Google Scholar 

  293. Li, X., Lin, Z.-H., Cheng, G., Wen, X., Liu, Y., Niu, S., Wang, Z.L.: 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8(10), 10674–10681 (2014)

    Article  CAS  Google Scholar 

  294. Chang, C., Tran, V.H., Wang, J., Fuh, Y.-K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010)

    Article  CAS  Google Scholar 

  295. Liu, Z.H., Pan, C.T., Lin, L.W., Huang, J.C., Ou, Z.Y.: Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process. Smart Mater. Struct. 23(2), 025003 (2013)

    Article  CAS  Google Scholar 

  296. Alluri, N.R., Saravanakumar, B., Kim, S.-J.: Flexible, hybrid piezoelectric film (BaTi(1–x)ZrxO3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS Appl. Mater. Interfaces 7(18), 9831–9840 (2015)

    Article  CAS  Google Scholar 

  297. Abbasipour, M., Khajavi, R., Yousefi, A.A., Yazdanshenas, M.E., Razaghian, F., Akbarzadeh, A.: Improving piezoelectric and pyroelectric properties of electrospun PVDF nanofibers using nanofillers for energy harvesting application. Polym. Adv. Technol. 30(2), 279–291 (2019)

    Article  CAS  Google Scholar 

  298. Eun, Y., Kwon, D.-S., Kim, M.-O., Yoo, I., Sim, J., Ko, H.-J., Cho, K.-H., Kim, J.: A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion. Smart Mater. Struct. 23(4), 045040 (2014)

    Article  CAS  Google Scholar 

  299. Ju, B.-J., Oh, J.-H., Yun, C., Park, C.H.: Development of a superhydrophobic electrospun poly(vinylidene fluoride) web via plasma etching and water immersion for energy harvesting applications. RSC Adv. 8(50), 28825–28835 (2018)

    Article  CAS  Google Scholar 

  300. Persano, L., Dagdeviren, C., Su, Y., Zhang, Y., Girardo, S., Pisignano, D., Huang, Y., Rogers, J.A.: High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013)

    Article  CAS  Google Scholar 

  301. Chen, X., Tian, H., Li, X., Shao, J., Ding, Y., An, N., Zhou, Y.: A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling. Nanoscale 7(27), 11536–11544 (2015)

    Article  CAS  Google Scholar 

  302. Tiwari, S., Gaur, A., Kumar, C., Maiti, P.: Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting. Energy 171, 485–492 (2019)

    Article  CAS  Google Scholar 

  303. Guo, W., Tan, C., Shi, K., Li, J., Wang, X.-X., Sun, B., Huang, X., Long, Y.-Z., Jiang, P.: Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale 10(37), 17751–17760 (2018)

    Article  CAS  Google Scholar 

  304. Vatansever, D., Hadimani, R., Shah, T., Siores, E.: Characterisation of energy generating polyvinylidene fluoride (PVDF) based piezoelectric filament. Adv. Mater. Res. 410, 366–369 (2012)

    Google Scholar 

  305. Hadimani, R.L., Bayramol, D.V., Sion, N., Shah, T., Qian, L., Shi, S., Siores, E.: Continuous production of piezoelectric PVDF fibre for e-textile applications. Smart Mater. Struct. 22(7), 075017 (2013)

    Article  CAS  Google Scholar 

  306. Kumar, C., Gaur, A., Tiwari, S., Biswas, A., Rai, S.K., Maiti, P.: Bio-waste polymer hybrid as induced piezoelectric material with high energy harvesting efficiency. Compos. Commun. 11, 56–61 (2019)

    Article  Google Scholar 

  307. Rasel, M.S., Maharjan, P., Park, J.Y.: Hand clap** inspired integrated multilayer hybrid nanogenerator as a wearable and universal power source for portable electronics. Nano Energy 63, 103816 (2019)

    Article  CAS  Google Scholar 

  308. Ji, S.H., Yun, J.S.: Fabrication and characterization of aligned flexible lead-free piezoelectric nanofibers for wearable device applications. Nanomaterials 8(4), 206 (2018)

    Article  CAS  Google Scholar 

  309. Hu, Y., Kang, W., Fang, Y., **e, L., Qiu, L., **, T.: Piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor for wrist motion signal detection. Appl. Sci. 8(5), 836 (2018)

    Article  CAS  Google Scholar 

  310. Singh, D., Choudhary, A., Garg, A.: Flexible and robust piezoelectric polymer nanocomposites based energy harvesters. ACS Appl. Mater. Interfaces 10(3), 2793–2800 (2018)

    Article  CAS  Google Scholar 

  311. You, S., Shi, H., Wu, J., Shan, L., Guo, S., Dong, S.: A flexible, wave-shaped P(VDF-TrFE)/metglas piezoelectric composite for wearable applications. J. Appl. Phys. 120(23), 234103 (2016)

    Article  CAS  Google Scholar 

  312. Maity, K., Mandal, D.: All-organic high-performance piezoelectric nanogenerator with multilayer assembled electrospun nanofiber mats for self-powered multifunctional sensors. ACS Appl. Mater. Interfaces 10(21), 18257–18269 (2018)

    Article  CAS  Google Scholar 

  313. Fu, J., Hou, Y., Gao, X., Zheng, M., Zhu, M.: Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density. Nano Energy 52, 391–401 (2018)

    Article  CAS  Google Scholar 

  314. Shaikh, M.O., Huang, Y.-B., Wang, C.-C., Chuang, C.-H.: Wearable woven triboelectric nanogenerator utilizing electrospun PVDF nanofibers for mechanical energy harvesting. Micromachines 10(7), 438 (2019)

    Article  Google Scholar 

  315. Matsouka, D., Vassiliadis, S., Vatansever Bayramol, D., Soin, N., Siores, E.: Investigation of the durability and stability of piezoelectric textile fibres. J. Intell. Mater. Syst. Struct. 28(5), 663–670 (2017)

    Article  CAS  Google Scholar 

  316. Qiu, Q., Zhu, M., Li, Z., Qiu, K., Liu, X., Yu, J., Ding, B.: Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 58, 750–758 (2019)

    Article  CAS  Google Scholar 

  317. Dhakras, D., Ogale, S.: High-performance organic-inorganic hybrid piezo-nanogenerator via interface enhanced polarization effects for self-powered electronic systems. Adv. Mater. Interfaces 3(20), 1600492 (2016)

    Article  CAS  Google Scholar 

  318. Choi, C., Park, J.W., Kim, K.J., Lee, D.W., de Andrade, M.J., Kim, S.H., Gambhir, S., Spinks, G.M., Baughman, R.H., Kim, S.J.: Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles. RSC Adv. 8(24), 13112–13120 (2018)

    Article  CAS  Google Scholar 

  319. Yetisen, A.K., Martinez-Hurtado, J.L., Ünal, B., Khademhosseini, A., Butt, H.: Wearables in medicine. Adv. Mater. 30(33), 1706910 (2018)

    Article  CAS  Google Scholar 

  320. Wearable Technology Database. Vandrico Inc. (2018)

    Google Scholar 

  321. IDC Forecasts Steady Double-Digit Growth for Wearables as New Capabilities and Use Cases Expand the Market Opportunities. International Data Corporation, Framingham, MA (2019)

    Google Scholar 

  322. India Smart Wearables Market Finishes Strong with 102,000 Shipment Units in 2018Q3, IDC India Reports. International Data Corporation (2018)

    Google Scholar 

  323. Worldwide Wearables Market Grows 7.3% in Q3 2017 as Smart Wearables Rise and Basic Wearables Decline. International Data Corporation, Framingham, MA (2017)

    Google Scholar 

  324. Li, Y., He, J., Huang, G., **e, Z.: Development Status and Trends of Wearable Smart Devices on Wrists, pp. 119–129. Springer International Publishing, Cham (2018)

    Google Scholar 

  325. Yetisen, A.K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M.R., Hinestroza, J.P., Skorobogatiy, M., Khademhosseini, A., Yun, S.H.: Nanotechnology in textiles. ACS Nano 10(3), 3042–3068 (2016)

    Article  CAS  Google Scholar 

  326. Toprakci, H.A., Ghosh, T.K.: Textile sensors. In: Handbook of Smart Textiles, pp. 357–379 (2015)

    Google Scholar 

  327. Cherenack, K., van Pieterson, L.: Smart textiles: challenges and opportunities. J. Appl. Phys. 112(9), 091301 (2012)

    Article  CAS  Google Scholar 

  328. Åkerfeldt, M., Lund, A., Walkenström, P.: Textile sensing glove with piezoelectric PVDF fibers and printed electrodes of PEDOT:PSS. Text. Res. J. 85(17), 1789–1799 (2015)

    Article  CAS  Google Scholar 

  329. Peters, G.M., Sandin, G., Spak, B.: Environmental prospects for mixed textile recycling in Sweden. ACS Sustain. Chem. Eng. 7(13), 11682–11690 (2019)

    Article  CAS  Google Scholar 

  330. Jo, C.-H., Myung, S.-T.: Efficient recycling of valuable resources from discarded lithium-ion batteries. J. Power Sources 426, 259–265 (2019)

    Article  CAS  Google Scholar 

  331. Ordoñez, J., Gago, E.J., Girard, A.: Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 60, 195–205 (2016)

    Article  CAS  Google Scholar 

  332. Stadlober, B., Zirkl, M., Irimia-Vladu, M.: Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chem. Soc. Rev. 48(6), 1787–1825 (2019)

    Article  CAS  Google Scholar 

  333. Curry, E.J., Ke, K., Chorsi, M.T., Wrobel, K.S., Miller, A.N., Patel, A., Kim, I., Feng, J., Yue, L., Wu, Q., Kuo, C.-L., Lo, K.W.-H., Laurencin, C.T., Ilies, H., Purohit, P.K., Nguyen, T.D.: Biodegradable piezoelectric force sensor. Proc. Natl. Acad. Sci. 115(5), 909–914 (2018)

    Article  CAS  Google Scholar 

  334. Wang, X., **ao, C., Liu, H., Huang, Q., Chen, M.: Fabrication and properties of recycled poly (vinylidene fluoride) (PVDF) hollow fiber membranes. Desalin. Water Treat. 87, 82–90 (2017)

    Article  CAS  Google Scholar 

  335. Sandin, G., Peters, G.M.: Environmental impact of textile reuse and recycling—a review. J. Clean. Prod. 184, 353–365 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Mokhtari .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mokhtari, F. (2022). Introduction and Literature Review. In: Self-Powered Smart Fabrics for Wearable Technologies. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-031-06481-4_1

Download citation

Publish with us

Policies and ethics

Navigation