Hangul Fonts Dataset: A Hierarchical and Compositional Dataset for Investigating Learned Representations

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

Hierarchy and compositionality are common latent properties in many natural and scientific image datasets. Determining when a deep network’s hidden activations represent hierarchy and compositionality is important both for understanding deep representation learning and for applying deep networks in domains where interpretability is crucial. However, current benchmark machine learning datasets either have little hierarchical or compositional structure, or the structure is not known. This gap impedes precise analysis of a network’s representations and thus hinders development of new methods that can learn such properties. To address this gap, we developed a new benchmark dataset with known hierarchical and compositional structure. The Hangul Fonts Dataset (HFD) is comprised of 35 fonts from the Korean writing system (Hangul), each with 11,172 blocks (syllables) composed from the product of initial, medial, and final glyphs. All blocks can be grouped into a few geometric types which induces a hierarchy across blocks. In addition, each block is composed of individual glyphs with rotations, translations, scalings, and naturalistic style variation across fonts. We find that both shallow and deep unsupervised methods show only modest evidence of hierarchy and compositionality in their representations of the HFD compared to supervised deep networks. Thus, HFD enables the identification of shortcomings in existing methods, a critical first step toward develo** new machine learning algorithms to extract hierarchical and compositional structure in the context of naturalistic variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bell, A.J., Sejnowski, T.J.: The “independent components” of natural scenes are edge filters. Vision Res. 37(23), 3327–3338 (1997). https://doi.org/10.1016/S0042-6989(97)00121-1

  2. Burgess, C., Kim, H.: 3D shapes dataset (2018). https://github.com/deepmind/3dshapes-dataset/

  3. Burgess, C.P., et al.: Understanding disentangling in \(\beta \)-VAE. ar**v preprint ar**v:1804.03599 (2018)

  4. Cheung, B., Livezey, J.A., Bansal, A.K., Olshausen, B.A.: Discovering hidden factors of variation in deep networks. ar**v preprint ar**v:1412.6583 (2014)

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009). https://doi.org/10.1109/CVPR.2009.5206848

  6. Denton, E., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a laplacian pyramid of adversarial networks. ar**v preprint ar**v:1506.05751 (2015)

  7. Higgins, I., et al.: Towards a definition of disentangled representations. ar**v preprint ar**v:1812.02230 (2018)

  8. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations, vol. 3 (2017)

    Google Scholar 

  9. Kell, A.J., Yamins, D.L., Shook, E.N., Norman-Haignere, S.V., McDermott, J.H.: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy. Neuron 98(3), 630–644 (2018). https://doi.org/10.1016/j.neuron.2018.03.044

    Article  Google Scholar 

  10. Kim, I.-J., Choi, C., Lee, S.-H.: Improving discrimination ability of convolutional neural networks by hybrid learning. Int. J. Doc. Anal. Recognit. (IJDAR) 19(1), 1–9 (2015). https://doi.org/10.1007/s10032-015-0256-9

    Article  Google Scholar 

  11. Kim, I.J., **e, X.: Handwritten hangul recognition using deep convolutional neural networks. Int. J. Doc. Anal. Recognit. (IJDAR) 18(1), 1–13 (2015). https://doi.org/10.1007/s10032-014-0229-4

    Article  Google Scholar 

  12. Kim, S., et al.: Deep-hurricane-tracker: tracking and forecasting extreme climate events. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1761–1769. IEEE (2019). https://doi.org/10.1109/WACV.2019.00192

  13. Ko, D.H., Lee, H., Suk, J., Hassan, A.U., Choi, J.: Hangul font dataset for Korean font research based on deep learning. KIPS Trans. Softw. Data Eng. 10(2), 73–78 (2021)

    Google Scholar 

  14. Krizhevsky, A., Nair, V., Hinton, G.: The CIFAR-10 dataset, vol. 55 (2014). http://www.cs.toronto.edu/kriz/cifar.html

  15. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015). https://doi.org/10.1126/science.aab3050

    Article  MathSciNet  MATH  Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999). https://doi.org/10.1038/44565

    Article  MATH  Google Scholar 

  18. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015. https://doi.org/10.1109/ICCV.2015.425

  19. Livezey, J.A., Bouchard, K.E., Chang, E.F.: Deep learning as a tool for neural data analysis: speech classification and cross-frequency coupling in human sensorimotor cortex. PLoS Comput. Biol. 15(9), e1007091 (2019). https://doi.org/10.1371/journal.pcbi.1007091

    Article  Google Scholar 

  20. Livezey, J.A., Glaser, J.I.: Deep learning approaches for neural decoding across architectures and recording modalities. Brief. Bioinform. 22(2), 1577–1591 (2021). https://doi.org/10.1093/bib/bbaa355

    Article  Google Scholar 

  21. Mathuriya, A., et al.: Cosmoflow: using deep learning to learn the universe at scale. In: SC 2018: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 819–829. IEEE (2018). https://doi.org/10.1109/SC.2018.00068

  22. Matthey, L., Higgins, I., Hassabis, D., Lerchner, A.: dSprites: disentanglement testing sprites dataset (2017). https://github.com/deepmind/dsprites-dataset/

  23. Nguyen, A., Yosinski, J., Clune, J.: Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks. ar**v preprint ar**v:1602.03616 (2016)

  24. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  25. Oktaviani, S., Sari, C.A., Rachmawanto, E.H., et al.: Optical character recognition for hangul character using artificial neural network. In: 2020 International Seminar on Application for Technology of Information and Communication (iSemantic), pp. 34–39. IEEE (2020). https://doi.org/10.1109/iSemantic50169.2020.9234215

  26. Park, G.R., Kim, I.J., Liu, C.L.: An evaluation of statistical methods in handwritten hangul recognition. Int. J. Doc. Anal. Recognit. (IJDAR) 16(3), 273–283 (2013). https://doi.org/10.1007/s10032-012-0191-y

    Article  Google Scholar 

  27. Purnamawati, S., Rachmawati, D., Lumanauw, G., Rahmat, R., Taqyuddin, R.: Korean letter handwritten recognition using deep convolutional neural network on android platform. In: Journal of Physics: Conference Series, vol. 978, p. 012112. IOP Publishing (2018). https://doi.org/10.1088/1742-6596/978/1/012112

  28. Schmidhuber, J.: Learning factorial codes by predictability minimization. Neural Comput. 4(6), 863–879 (1992). https://doi.org/10.1162/neco.1992.4.6.863

    Article  Google Scholar 

  29. Stevens, R., Taylor, V., Nichols, J., Maccabe, A.B., Yelick, K., Brown, D.: AI for science (2020)

    Google Scholar 

  30. Korea University: HanDB: PE92 and SERI95 (2017). https://github.com/callee2006/HangulDB

  31. Van Eck, P.: Handwritten Korean character recognition with tensorflow and android (2017). https://developer.ibm.com/patterns/create-mobile-handwritten-hangul-translation-app/

  32. Yamins, D.L., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., DiCarlo, J.J.: Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. Sci. 111(23), 8619–8624 (2014). https://doi.org/10.1073/pnas.1403112111

    Article  Google Scholar 

Download references

Acknowledgements

JAL, AH, and KEB were supported by the Deep Learning for Science LBNL LDRD. We are grateful for the feedback on the project from the Neural Systems and Data Science Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse A. Livezey .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2797 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Livezey, J.A., Hwang, A., Yeung, J., Bouchard, K.E. (2022). Hangul Fonts Dataset: A Hierarchical and Compositional Dataset for Investigating Learned Representations. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13233. Springer, Cham. https://doi.org/10.1007/978-3-031-06433-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06433-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06432-6

  • Online ISBN: 978-3-031-06433-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation