On Trace Sets of Restricted Continued Fraction Semigroups

  • Chapter
  • First Online:
Analysis at Large
  • 498 Accesses

Abstract

We record an argument due to Jean Bourgain which gives lower bounds on the size of the trace sets of certain semigroups related to continued fractions on finite alphabets. These bounds are motivated by the “Classical Arithmetic Chaos” Conjecture of McMullen (Dynamics of units and packing constants of ideals, 2012). Specifically, a power is gained in the asymptotic size of the trace set over a “trivial” exponent. The proof involves a new application of the Balog-Szemerédi-Gowers Lemma from additive combinatorics.

Dedicated to the memory of Jean Bourgain

The author is partially supported by an NSF grant DMS-1802119, and the Simons Foundation through MoMath’s Distinguished Visiting Professorship for the Public Dissemination of Mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Heath-Brown [19] was later able to do the same for the even thinner polynomial x3 + 2y3, which takes about X2∕3 values up to X.

  2. 2.

    See also [25] for a simpler instance of this “parity breaking.”

  3. 3.

    It turns out that I should have been able to product R-almost primes with R = 7, see [21].

  4. 4.

    Much later, I would exploit a similar feature in [29].

  5. 5.

    For a formal definition of thinness in a general context, see [27, p. 954].

References

  1. Bourgain, J.: On the dimension of Kakeya sets and related maximal inequalities. Geom. Funct. Anal. 9(2), 256–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain, J.: Sum-product theorems and applications. In: Additive Number Theory, pp. 9–38. Springer, New York (2010)

    Google Scholar 

  3. Bourgain, J.: Integral Apollonian circle packings and prime curvatures. J. Anal. Math. 118(1), 221–249 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J., Kontorovich, A.: On representations of integers in thin subgroups of SL(2, Z). GAFA 20(5), 1144–1174 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Kontorovich, A.: On Zaremba’s conjecture. Annals Math. 180(1), 137–196 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J., Kontorovich, A.: On the local-global conjecture for integral Apollonian gaskets. Invent. Math. 196(3), 589–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J., Kontorovich, A.: The affine sieve beyond expansion I: Thin hypotenuses. Int. Math. Res. Not. IMRN (19), 9175–9205 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgain, J., Kontorovich, A.: Beyond expansion II: low-lying fundamental geodesics. J. Eur. Math. Soc. (JEMS) 19(5), 1331–1359 (2017)

    Google Scholar 

  9. Bourgain, J., Kontorovich, A.: Beyond expansion IV: Traces of thin semigroups. Discrete Anal., Paper No. 6, 27 (2018)

    Google Scholar 

  10. Bourgain, J., Kontorovich, A.: Beyond expansion III: Reciprocal geodesics, 2019. To appear, Duke Math. J. ar**v:1610.07260

    Google Scholar 

  11. Bourgain, J., Gamburd, A., Sarnak, P.: Affine linear sieve, expanders, and sum-product. Invent. Math. 179(3), 559–644 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourgain, J., Kontorovich, A., Sarnak, P.: Sector estimates for hyperbolic isometries. GAFA 20(5), 1175–1200 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Bourgain, J., Gamburd, A., Sarnak, P.: Generalization of Selberg’s 3/16th theorem and affine sieve. Acta Math 207, 255–290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedlander, J., Iwaniec, H.: The polynomial X2 + Y4 captures its primes. Ann. Math. (2) 148(3), 945–1040 (1998)

    Google Scholar 

  15. Frolenkov, D.A., Kan, I.D.: A strengthening of a theorem of Bourgain-Kontorovich II. Mosc. J. Comb. Number Theory 4(1), 78–117 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A.R., Yan, C.H.: Apollonian circle packings: number theory. J. Number Theory 100(1), 1–45 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Good, I.J.: The fractional dimensional theory of continued fractions. Proc. Camb. Philos. Soc. 37, 199–228 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gowers, W.T.: A new proof of Szemerédi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8(3), 529–551 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heath-Brown, D.R.: Primes represented by x3 + 2y3. Acta Math. 186(1), 1–84 (2001)

    Article  MathSciNet  Google Scholar 

  20. Hensley, D.: The distribution of badly approximable numbers and continuants with bounded digits. In: Théorie des nombres (Quebec, PQ, 1987), pp. 371–385. de Gruyter, Berlin (1989)

    Google Scholar 

  21. Hong, J., Kontorovich, A.: Almost prime coordinates for anisotropic and thin pythagorean orbits. Isr. J. Math. 209(1), 397–420 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jenkinson, O.: On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture. Stoch. Dyn. 4(1), 63–76 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kan, I.D.: A strengthening of a theorem of Bourgain and Kontorovich. V. Tr. Mat. Inst. Steklova 296(Analiticheskaya i Kombinatornaya Teoriya Chisel), 133–139 (2017)

    Google Scholar 

  24. Kontorovich, A.: The hyperbolic lattice point count in infinite volume with applications to sieves. Duke J. Math. 149(1), 1–36 (2009). ar**v:0712.1391

    Google Scholar 

  25. Kontorovich, A.: A pseudo-twin primes theorem (2012). In: Proceedings of the Edinburg Conference, Workshop on Multiple Dirichlet Series. ar**v:0507569. To appear

    Google Scholar 

  26. Kontorovich, A.: From Apollonius to Zaremba: local-global phenomena in thin orbits. Bull. Am. Math. Soc. (N.S.) 50(2), 187–228 (2013)

    Google Scholar 

  27. Kontorovich, A.: Levels of distribution and the affine sieve. Ann. Fac. Sci. Toulouse Math. (6) 23(5), 933–966 (2014)

    Google Scholar 

  28. Kontorovich, A.: Applications of thin orbits. In: Dynamics and Analytic Number Theory, vol. 437. London Math. Soc. Lecture Note Ser., pp. 289–317. Cambridge Univ. Press, Cambridge (2016)

    Google Scholar 

  29. Kontorovich, A.: The local-global principle for integral Soddy sphere packings. J. Modern Dynam. 15, 209–236 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kontorovich, A., Oh, H.: Almost prime Pythagorean triples in thin orbits. J. Reine Angew. Math. 667, 89–131 (2012). ar**v:1001.0370

    Google Scholar 

  31. McMullen, C.T.: Uniformly Diophantine numbers in a fixed real quadratic field. Compos. Math. 145(4), 827–844 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. McMullen, C.: Dynamics of units and packing constants of ideals (2012). Online lecture notes, http://www.math.harvard.edu/~ctm/expositions/home/text/papers/cf/slides/slides.pdf

  33. Mercat, P.: Construction de fractions continues périodiques uniformément bornées (2012). To appear, J. Théor. Nombres Bordeaux

    Google Scholar 

  34. Patterson, S.J.: The Laplacian operator on a Riemann surface. Compositio Math. 31(1), 83–107 (1975)

    MathSciNet  MATH  Google Scholar 

  35. Pjateckiĭ-S̆apiro, I.I.: On the distribution of prime numbers in sequences of the form [f(n)]. Mat. Sb. 33, 559–566 (1953)

    Google Scholar 

  36. Sarnak, P.: Letter to J. Lagarias (2007). http://web.math.princeton.edu/sarnak/AppolonianPackings.pdf

  37. Sarnak, P.: Reciprocal geodesics. In: Analytic Number Theory, vol. 7. Clay Math. Proc., pp. 217–237. Amer. Math. Soc., Providence, RI (2007)

    Google Scholar 

  38. Wilson, S.M.J.: Limit points in the Lagrange spectrum of a quadratic field. Bull. Soc. Math. France 108, 137–141 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  39. Woods, A.C.: The Markoff spectrum of an algebraic number field. J. Aust. Math. Soc. Ser. A 25(4), 486–488 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zaremba, S.K.: La méthode des “bons treillis” pour le calcul des intégrales multiples. In: Applications of Number Theory to Numerical Analysis (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971), pp. 39–119. Academic Press, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Kontorovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Kontorovich, A. (2022). On Trace Sets of Restricted Continued Fraction Semigroups. In: Avila, A., Rassias, M.T., Sinai, Y. (eds) Analysis at Large. Springer, Cham. https://doi.org/10.1007/978-3-031-05331-3_11

Download citation

Publish with us

Policies and ethics

Navigation