Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2022)

Abstract

Topology optimisation of trusses can be formulated as a combinatorial and multi-modal problem in which locating distinct optimal designs allows practitioners to choose the best design based on their preferences. Bilevel optimisation has been successfully applied to truss optimisation to consider topology and sizing in upper and lower levels, respectively. We introduce exact enumeration to rigorously analyse the topology search space and remove randomness for small problems. We also propose novelty-driven binary particle swarm optimisation for bigger problems to discover new designs at the upper level by maximising novelty. For the lower level, we employ a reliable evolutionary optimiser to tackle the layout configuration aspect of the problem. We consider truss optimisation problem instances where designers need to select the size of bars from a discrete set with respect to practice code constraints. Our experimental investigations show that our approach outperforms the current state-of-the-art methods and it obtains multiple high-quality solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahrari, A., Atai, A.A., Deb, K.: A customized bilevel optimization approach for solving large-scale truss design problems. Eng. Optim. 52(12), 2062–2079 (2020)

    Article  MathSciNet  Google Scholar 

  2. Ahrari, A., Deb, K.: An improved fully stressed design evolution strategy for layout optimization of truss structures. Comput. Struct. 164, 127–144 (2016)

    Article  Google Scholar 

  3. Brooks, T.R., Kenway, G.K., Martins, J.R.: Undeflected common research model (UCRM): an aerostructural model for the study of high aspect ratio transport aircraft wings. In: 35th AIAA Applied Aerodynamics Conference, p. 4456 (2017)

    Google Scholar 

  4. Cheng, M.: A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure. Autom. Constr. 69, 21–33 (2016)

    Article  Google Scholar 

  5. Deb, K., Gulati, S.: Design of truss-structures for minimum weight using genetic algorithms. Finite Elem. Anal. Des. 37(5), 447–465 (2001)

    Google Scholar 

  6. Degertekin, S.O., Lamberti, L., Ugur, I.: Sizing, layout and topology design optimization of truss structures using the JAVA algorithm. Appl. Soft Comput. 70, 903–928 (2018)

    Article  Google Scholar 

  7. Degertekin, S., Lamberti, L., Ugur, I.: Discrete sizing/layout/topology optimization of truss structures with an advanced JAVA algorithm. Appl. Soft Comput. 79, 363–390 (2019)

    Article  Google Scholar 

  8. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sc. 276(1), 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  9. Fenton, M., McNally, C., Byrne, J., Hemberg, E., McDermott, J., O’Neill, M.: Automatic innovative truss design using grammatical evolution. Autom. Constr. 39(C), 59–69 (2014)

    Google Scholar 

  10. Finotto, V.C., da Silva, W.R., Valášek, M., Štemberk, P.: Hybrid fuzzy-genetic system for optimising cabled-truss structures. Adv. Eng. Softw. 62, 85–96 (2013)

    Article  Google Scholar 

  11. Galvao, D.F., Lehman, J., Urbano, P.: Novelty-driven particle swarm optimization. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp. 177–190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31471-6_14

    Chapter  Google Scholar 

  12. Hasancebi, O.: Optimization of truss bridges within a specified design domain using evolution strategies. Engi. Optim. 39(6), 737–756 (2007)

    Article  Google Scholar 

  13. Hasancebi, O., Erbatur, F.: Layout optimization of trusses using improved GA methodologies. Acta mechanica 146(1), 87–107 (2001)

    Article  Google Scholar 

  14. Hasançebi, O., Erbatur, F.: Layout optimisation of trusses using simulated annealing. Adv. Eng. Softw. 33(7), 681–696 (2002)

    Google Scholar 

  15. He, S., Prempain, E., Wu, Q.: An improved particle swarm optimizer for mechanical design optimization problems. Eng. Optim. 36(5), 585–605 (2004)

    Article  MathSciNet  Google Scholar 

  16. Ho-Huu, V., Nguyen-Thoi, T., Vo-Duy, T., Nguyen-Trang, T.: An adaptive elitist differential evolution for optimization of truss structures with discrete design variables. Comput. Struct. 165(C), 59–75 (2016)

    Google Scholar 

  17. Islam, M.J., Li, X., Deb, K.: Multimodal truss structure design using bilevel and niching based evolutionary algorithms. In: Genetic and Evolutionary Computation Conference (GECCO). pp. 274–281. Association for Computing Machinery (2017)

    Google Scholar 

  18. Kaveh, A., Talatahari, S.: A particle swarm ant colony optimization for truss structures with discrete variables. J. Constr. Steel Res. 65(8–9), 1558–1568 (2009)

    Article  Google Scholar 

  19. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: International Conference on Neural Networks (ICNN). vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  20. Khayyam, H., Jamali, A., Assimi, H., Jazar, R.N.: Genetic programming approaches in design and optimization of mechanical engineering applications. In: Jazar, R.N., Dai, L. (eds.) Nonlinear Approaches in Engineering Applications, pp. 367–402. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18963-1_9

    Chapter  Google Scholar 

  21. Kicinger, R., Arciszewski, T., De Jong, K.: Evolutionary computation and structural design: a survey of the state-of-the-art. Comput. Struct. 83(23–24), 1943–1978 (2005)

    Article  Google Scholar 

  22. Lee, K.S., Geem, Z.W., Lee, S.h., Bae, K.w.: The harmony search heuristic algorithm for discrete structural optimization. Eng. Optim. 37(7), 663–684 (2005)

    Google Scholar 

  23. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: ALIF, pp. 329–336. Citeseer (2008)

    Google Scholar 

  24. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  25. Li, L.J., Huang, Z.B., Liu, F.: A heuristic particle swarm optimization method for truss structures with discrete variables. Comput. Struct. 87(7–8), 435–443 (2009)

    Article  Google Scholar 

  26. Li, X., Epitropakis, M.G., Deb, K., Engelbrecht, A.: Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE Trans. Evol. Comput. 21(4), 518–538 (2016)

    Article  Google Scholar 

  27. Martinez, A.D., Osaba, E., Oregi, I., Fister, I., Fister, I., Ser, J.D.: hybridizing differential evolution and novelty search for multimodal optimization problems. In: Genetic and Evolutionary Computation Conference (GECCO) Companion, pp. 1980–1989 (2019)

    Google Scholar 

  28. Panagant, N., Bureerat, S.: Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution. Eng. Optim. 50(10), 1645–1661 (2018)

    Article  MathSciNet  Google Scholar 

  29. Rajeev, S., Krishnamoorthy, C.S.: Discrete optimization of structures using genetic algorithms. J. Struct. Eng. 118(5), 1233–1250 (1992)

    Article  Google Scholar 

  30. Rao, G.V.: Optimum designs for transmission line towers. Comput. Struct. 57(1), 81–92 (1995)

    Article  Google Scholar 

  31. Seber, G., Ran, H., Nam, T., Schetz, J., Mavris, D.: Multidisciplinary design optimization of a truss braced wing aircraft with upgraded aerodynamic analyses. In: 29th AIAA Applied Aerodynamics Conference, p. 3179 (2011)

    Google Scholar 

  32. Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–295 (2017)

    Article  Google Scholar 

  33. Stolpe, M.: Truss optimization with discrete design variables: a critical review. Struct. Multidiscipl. Optim. 53(2), 349–374 (2015). https://doi.org/10.1007/s00158-015-1333-x

    Article  MathSciNet  Google Scholar 

  34. Top**, B.: Shape optimization of skeletal structures: a review. J. Struct. Eng. 109(8), 1933–1951 (1983)

    Article  Google Scholar 

  35. Wu, S.J., Chow, P.T.: Steady-state genetic algorithms for discrete optimization of trusses. Comput. Struct. 56(6), 979–991 (1995)

    Article  Google Scholar 

  36. Zhang, Y.N., Liu, P., Liu, B., Zhu, C.Y., Li, Y.: Application of improved hybrid genetic algorithm to optimized design of architecture structures. Huanan Ligong Daxue Xuebai(Ziran Kexue Ban)/J. South China Univ. Technol. (Natural Science Edition)(China) 33(3), 69–72 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirad Assimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Assimi, H., Neumann, F., Wagner, M., Li, X. (2022). Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. In: Pérez Cáceres, L., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2022. Lecture Notes in Computer Science, vol 13222. Springer, Cham. https://doi.org/10.1007/978-3-031-04148-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04148-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04147-1

  • Online ISBN: 978-3-031-04148-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation