Prospects and Toxicological Concerns of Nanotechnology Application in the Food Industry

  • Chapter
  • First Online:
Application of Nanotechnology in Food Science, Processing and Packaging

Abstract

Nanotechnology offers the food industry several new approaches for improving the quality, shelf life, safety, and healthiness of foods. Nanoparticles are considered magic bullets because of their unique properties. Currently, the use of nanoparticles has emerged in almost every field of technology. Along with the increased usage of nanoparticles in day-to-day life, concern on safety issues and regulatory alarms on nano-processed food products have arisen. There is an imbalance between the increase in research to identify new nanoparticle applications and their safety and has triggered pressure on scientists to recognize the possible effects of nanoparticles on human health. Herein, an attempt to analyze various findings on the use and the safety of nanoparticles in food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sozer N, Kokini JL. Nanotechnology and its applications in the food sector. Trends Biotechnol. 2008;27:82–9.

    Article  CAS  Google Scholar 

  2. Livney YD. Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci. 2010;15:73–83.

    Article  CAS  Google Scholar 

  3. Bellmann S, Carlander D, Fasano A, Momcilovic D, Scimeca JA, Waldman JW, et al. Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Nanomed Nanobiotechnol. 2015;7:609–22.

    Article  CAS  Google Scholar 

  4. Fellows PJ. Food processing technology. 4th ed. Cambridge: Woodhead Publishing; 2017.

    Google Scholar 

  5. Dowling A, Clift R, Grobert N, Hutton D, Oliver R, O’Neill O, et al. Nanoscience and nanotechnologies: opportunities and uncertainties. London: The Royal Society & The Royal Academy of Engineering Report; 2004. p. 61–4.

    Google Scholar 

  6. Egbuna C, Parmar VK, Jeevanandam J, Ezzat SM, Patrick-Iwuanyanwu KC, Adetunji CO, Khan J, et al. Toxicity of nanoparticles in biomedical application: nanotoxicology. J Toxicol. 2021;2021:9954443. https://doi.org/10.1155/2021/9954443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuzma J, VerHage P. Nanotechnology in agriculture and food production: anticipated applications: project on emerging nanotechnologies. 2006. http://www.nanotechproject.org/process/assets/files/2706/94_pen4_agfood.pdf. Accessed 6 May 2014.

  8. Bowman DM, Hodge GA. Nanotechnology and public interest dialogue: some international observations. Bull Sci Technol Soc. 2007;27(2):118–32.

    Article  Google Scholar 

  9. Scott N, Chen H, Rutzke CJ. Nanoscale science and engineering for agriculture and food systems: a report submitted to cooperative state research, education and extension service, the United States Department of Agriculture: National Planning Workshop; November 18–19 2002; Washington, DC: USDA; 2003.

    Google Scholar 

  10. Kalpana SR, Anshul S, Rao NH. Nanotechnology in food processing sector—an assessment of emerging trends. J Food Sci Technol. 2013;50:831–41.

    Article  CAS  Google Scholar 

  11. Magnuson BA, Jonaitis TS, Card JW. A brief review of the occurrence, use, and safety of food-related nanomaterials. J Food Sci. 2011;76:R126–33.

    Article  CAS  PubMed  Google Scholar 

  12. Editorial SV. Environmental impacts of engineered nanoparticles. Environ Toxicol Chem. 2010;29:2389–90.

    Article  CAS  Google Scholar 

  13. Jain A, Shivendu R, Nandita D, Chidambaram R. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. 2018;58(2):297–317.

    Article  CAS  PubMed  Google Scholar 

  14. Savolainen K, Pylkkänen L, Norppa H, Falck G, Lindberg H, Tuomi T, et al. Nanotechnologies, engineered nanomaterials and occupational health and safety—a review. Saf Sci. 2010;6:1–7.

    Google Scholar 

  15. Athinarayanan J, Periasamy VS, Alsaif MA, Al-Warthan AA. Alshatwi a a presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol Toxicol. 2014;30:89–100.

    Article  CAS  PubMed  Google Scholar 

  16. Mahler GJ, Esch MB, Tako E, Southard TL, Archer SD, Glahn RP, et al. Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol. 2012;7:264–71.

    Article  CAS  PubMed  Google Scholar 

  17. McClements DJ, DeLoid G, Pyrgiotakis G, Shatkin JA, **ao H, Demokritou P. The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): state of the science and knowledge gaps. NanoImpact. 2016;3–4:47–57.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7:779–86.

    Article  CAS  PubMed  Google Scholar 

  19. Cao X, Ma C, Gao Z, Zheng J, He L, McClements DJ, **ao H. Characterization of the interactions between titanium dioxide nanoparticles and polymethoxyflavones using surface-enhanced Raman spectroscopy. J Agric Food Chem. 2016;64(49):9436–41.

    Article  CAS  PubMed  Google Scholar 

  20. Yada RY, Buck N, Canady R, DeMerlis C, Duncan T, Janer G, Juneja L, Lin M, McClements DJ, Noonan G, Oxley J, Sabliov C, Tsytsikova L, Vázquez-Campos S, Yourick J, Zhong Q, Thurmond S. Engineered nanoscale food ingredients: evaluation of current knowledge on material characteristics relevant to uptake from the gastrointestinal tract. Comp Rev Food Sci Food Saf. 2014;2014(13):730–44.

    Article  CAS  Google Scholar 

  21. Silletti E, Vingerhoeds MH, Norde W, Van Aken GA. The role of electrostatics in saliva-induced emulsion flocculation. Food Hydrocoll. 2007;21:596–606.

    Article  CAS  Google Scholar 

  22. Giri K, Shameer K, Zimmermann MT, Saha S, Chakraborty PK, Sharma A, Arvizo RR, Madden BJ, Mccormick DJ, Kocher J-PA, Bhattacharya R, Mukherjee P. Understanding protein–nanoparticle interaction: a new gateway to disease therapeutics. Bioconjug Chem. 2014;25:1078–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Das P, Saulnier E, Carlucci C, Allen-Vercoe E, Shah V, Walker VK. Interaction between a broad-spectrum antibiotic and silver nanoparticles in a human gut ecosystem. J Nanomed Nanotechnol. 2016;7:1–7.

    Google Scholar 

  24. Di Silvio D, Rigby N, Bajka B, Mackie A, Bombelli FB. Effect of protein corona magnetite nanoparticles derived from bread in vitro digestion on CaCo-2 cells morphology and uptake. Int J Biochem Cell Biol. 2016;75:212–22.

    Article  CAS  PubMed  Google Scholar 

  25. Lichtenstein D, Ebmeyer J, Knappe P, Juling S, Böhmert L, Selve S, Niemann B, Braeuning A, Thünemann AF, Lampen A. Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells. Biol Chem. 2015;396(11):1255–64.

    Article  CAS  PubMed  Google Scholar 

  26. He X, Aker WG, Leszczynski J, Hwang H-M. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. J Food Drug Anal. 2014;22:128–46.

    Article  CAS  PubMed  Google Scholar 

  27. Khan MI, Mohammad A, Patil G, Naqvi SAH, Chauhan LKS, Ahmad I. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials. 2012;33:1477–88.

    Article  CAS  PubMed  Google Scholar 

  28. Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect. 2007;115:1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He X, Aker WG, Hwang H-M. An in vivo study on the photo-enhanced toxicities of S-doped TiO2 nanoparticles to zebrafish embryos (Danio rerio) in terms of malformation, mortality, rheotaxis dysfunction, and DNA damage. Nanotoxicology. 2014;8:185–95.

    Article  CAS  PubMed  Google Scholar 

  30. He X, Hwang H-M. Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal. 2016;24:671–81.

    Article  CAS  PubMed  Google Scholar 

  31. Tripathi KM, Bhati A, Singh A, Sonker AK, Sarkar S, Sonkar SK. Sustainable changes in the contents of metallic micronutrients in first generation gram seeds imposed by carbon nano-onions: life cycle seed to seed study. ACS Sustain Chem Eng. 2017;5:2906–16.

    Article  CAS  Google Scholar 

  32. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, et al. Nano genotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials. 2009;30:3891–914.

    Article  CAS  PubMed  Google Scholar 

  33. Frohlich EE, Frohlich E. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. Int J Mol Sci. 2016;17:1–22.

    Article  CAS  Google Scholar 

  34. Orfi E, Szebeni J. The immune system of the gut and potential adverse effects of oral nanocarriers on its function. Adv Drug Deliv Rev. 2016;106:402–9.

    Article  CAS  PubMed  Google Scholar 

  35. Gaillet S, Rouanet JM. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms—a review. Food Chem Toxicol. 2015;77:58–63.

    Article  CAS  PubMed  Google Scholar 

  36. Wu HH, Yin JJ, Wamer WG, Zeng MY, Lo YM. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal. 2014;22:86–94.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci. 2014;204:15–34.

    Article  CAS  PubMed  Google Scholar 

  38. Athinarayanan J, Periasamy VS, Alsaif MA, Al-Warthan AA, Alshatwi AA. Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol Toxicol. 2014;30:89–100.

    Article  CAS  PubMed  Google Scholar 

  39. Choi J, Kim H, Kim P, Jo E, Kim HM, Lee MY, ** SM, Park K. Toxicity of zinc oxide nanoparticles in rats treated by two different routes: single intravenous injection and single oral administration. J Toxicol Environ Health A. 2015;78(4):226–43.

    Article  CAS  PubMed  Google Scholar 

  40. Salvia-Trujillo L, Martin-Belloso O, McClements DJ. Excipient nanoemulsions for improving oral bioavailability of bioactives. Nanomaterials. 2016;6:1–16.

    Article  CAS  Google Scholar 

  41. McClements DJ. Design of nano-laminated coatings to control bioavailability of lipophilic food components. J Food Sci. 2010;75:R30–42.

    Article  CAS  PubMed  Google Scholar 

  42. Joye IJ, Davidov-Pardo G, McClements DJ. Nanotechnology for increased micronutrient bioavailability. Trends Food Sci Technol. 2014;40:168–82.

    Article  CAS  Google Scholar 

  43. Walker R, Decker EA, McClements DJ. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food Funct. 2015;6:42–55.

    Article  PubMed  Google Scholar 

  44. Katouzian I, Jafari SM. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci Technol. 2016;53:34–48.

    Article  CAS  Google Scholar 

  45. McClements DJ. Reduced-fat foods: the complex science of develo** diet-based strategies for tackling overweight and obesity. Adv Nutr. 2015;6:338S–52S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  47. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–21.

    Article  CAS  Google Scholar 

  48. Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 2000;74(1):1–8. https://doi.org/10.1007/s004200000185.

    Article  Google Scholar 

  49. Amini SM, Kharrazi S, Hadizadeh M, Fateh M, Saber R. Effect of gold nanoparticles on photodynamic efficiency of 5-aminolevolenic acid photosensitiser in epidermal carcinoma cell line: an in vitro study. Institution of Engineering and Technology [Internet]. http://digital-library.theiet.org/content/journals/10.1049/IET-NBT.2013.0021

  50. Kyung OY, Grabinski CM, Schrand AM, Murdock RC, Wang W, Gu B, et al. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res. 2009;11(1):15–24. https://doi.org/10.1007/s11051-008-9417-9.

    Article  CAS  Google Scholar 

  51. Borm PJ, Kreyling W. Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J Nanosci Nanotechnol. 2004;4(5):521–31.

    Article  CAS  PubMed  Google Scholar 

  52. Murray A, Kisin E, Leonard S, Young S, Kommineni C, Kagan V, et al. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology. 2009;257(3):161–71.

    Article  CAS  PubMed  Google Scholar 

  53. Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, et al. Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res. 2009;11(6):1361–74.

    Article  CAS  Google Scholar 

  54. Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 2005;5(2):331–8.

    Article  CAS  PubMed  Google Scholar 

  55. Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. NanoBiosci IEEE Trans. 2004;3(1):66–73.

    Article  Google Scholar 

  56. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2010;45(1):283–7.

    Article  CAS  PubMed  Google Scholar 

  57. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. JID. 2006;127(1):143–53.

    Article  CAS  Google Scholar 

  58. Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Einviron Health. 2001;74:1–8.

    Google Scholar 

  59. Salnikow K, Kasprzak KS. Ascorbate depletion: a critical step in nickel carcinogenesis? Environ Health Perspect. 2005;113(5):577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, et al. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol. 2006;40(14):4374–81.

    Article  CAS  PubMed  Google Scholar 

  61. Li J, Li Q, Xu J, Li J, Cai X, Liu R, et al. Comparative study on the acute pulmonary toxicity induced by 3 and 20 nm TiO2 primary particles in mice. Environ Toxicol Pharmacol. 2007;24(3):239–44.

    Article  CAS  PubMed  Google Scholar 

  62. Momin J, Jayakumar C, Prajapati J. Potential of nanotechnology in functional foods. Emirates J Food Agric. 2013;25:10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abeer Mohamed Ali El Sayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Sayed, A.M.A., Egbuna, C., C. Patrick-Iwuanyanwu, K., Uche, C.Z., Khan, J., N. Onyeike, E. (2022). Prospects and Toxicological Concerns of Nanotechnology Application in the Food Industry. In: Egbuna, C., Jeevanandam, J., C. Patrick-Iwuanyanwu, K., N. Onyeike, E. (eds) Application of Nanotechnology in Food Science, Processing and Packaging . Springer, Cham. https://doi.org/10.1007/978-3-030-98820-3_15

Download citation

Publish with us

Policies and ethics

Navigation