Enzymes in the Digestion of Domesticated Animals

  • Chapter
  • First Online:
Animal Manure

Part of the book series: Soil Biology ((SOILBIOL,volume 64))

  • 534 Accesses

Abstract

Digestive enzyme is one of the important enzymes produced in the stomach and pancreas and released into the duodenum and helps to digest the food. There are several enzymes like proteolytic enzymes, gastric enzymes, pancreatic enzymes, glycolytic enzymes, salivary and pancreatic amylase enzymes that are discussed in this chapter. In the digestive tract of cattle, the functionality and composition of the microbiome or microbiota are considered robust. The high grain feeding decreases the diversity, richness and functionality of this microbiota and hence affects the production and health of animals. Gut microbiota contributes to the metabolism of host as it protects against the pathogens, educates the immune system and, via these basic functions, directly or indirectly affects most of the physiological functions of its host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Asplund JM (1994) In: Asplund JM (ed) Principles of protein nutrition of ruminants, 1st edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Azad E, Rico DE, Derakhshani H, Havartine KJ, Khafipour E (2015) Composition of rumen microbiota alters following diet-induced milk fat depression in dairy cows. Joint Annual Meeting of American Society of Animal Science and American Dairy Science Association, Orlando, FL, pp 12–16

    Google Scholar 

  • Beauchemin KA, Morgavi DP, McAllister TA, Yang WZ, Rode LM (2001) The use of enzymes in ruminant diets. In: Garnsworthy, Wiseman J (eds) Recent advances in animal nutrition. Nottingham University Press, Loughborough, pp 297–322

    Google Scholar 

  • Bhat MK, Hazlewood GP (2001) Enzymology and other characteristics of cellulases and xylanases. In: Bedford M, Partridge G (eds) Enzymes in farm animal nutrition. CABI Publishing, Oxford, pp 11–60

    Chapter  Google Scholar 

  • Borgstrom B, Dahlqvist A, Gustafsson BE, Lundh G, Malmquist J (1959) Trypsin, invertase and amylase content of feces of germ-free rats. Proc Soc Exp Biol Med 102:154–155

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chistoserdova L, Jenkins C, Kalyuzhnaya MG, Marx CJ, Lapidus A, Vorholt JA, Staley JT, Lidstrom ME (2004) The enigmatic Planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21:1234

    Article  CAS  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–185

    Article  CAS  Google Scholar 

  • Coates ME, Hewitt S, Golob P (1970) A comparison of the effects of raw and heated soya bean meal in diets for germ-free and conventional chicks. Br J Nutr 24:213–225

    Article  CAS  Google Scholar 

  • Colombatto D (2000) Use of enzymes to improve fibre utilization in ruminants. A biochemical and in vitro rumen degradation assessment. Ph.D. thesis, University of Reading, UK

    Google Scholar 

  • Devillard E, Goodheart DB, Karnati SKR, Bayer EA, Lamed R, Miron J, Karen E, Morrison M, Nelson KE (2004) Ruminococcus Albus 8 mutants defective in cellulose degradation are deficient in two Processive Endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J Bacteriol 186:136–145. https://doi.org/10.1128/JB.186.1.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng P, Hunt CW, Pritchard GT, Jullen WE (1996) Effect of enzyme preparation on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers. Anim Sci 74:1349–1357

    Article  CAS  Google Scholar 

  • Forano E, Delort A-M, Matulova M (2008) Carbohydrate metabolism in Fibrobacter succinogenes: what NMR tells us. Microb Ecol Health Dis 20(2):94–102. https://doi.org/10.1080/08910600802106517

    Article  CAS  Google Scholar 

  • Frey JC, Pell AN, Berthiaume R, Lapierre H, Lee S, Ha JK, Mendell JE, Angert ER (2010) Comparative studies of microbial populations in the rumen, duodenum, ileum and Faeces of lactating dairy cows. J Appl Microbiol 1086:1982–1993. https://doi.org/10.1111/j.1365-2672.2009.04602.x

    Article  CAS  Google Scholar 

  • Gotelli NJ, Colwell RK (2010) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford Univ. Press, New York, NY, pp 39–54

    Google Scholar 

  • Gray GM, Cooper HL (1971) Protein digestion and absorption. Gastroenterology 61:535–544

    Article  CAS  Google Scholar 

  • Guo X, **a X, Tang R, Zhou J, Zhao H, Wang K (2008) Development of a real-time PCR method for Firmicutes and Bacteroidetes in Faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 47:367–373. https://doi.org/10.1111/j.1472-765X.2008.02408.x

    Article  CAS  PubMed  Google Scholar 

  • Heizer WD, Kerley RL, Isselbacher KL (1972) Intestinal peptide hydrolases differences between brush-border and cytoplasmic enzymes. Biochim Biophys Acta 264:450–461

    Article  CAS  Google Scholar 

  • Henderson G, Cox F, Ganesh S, Jonker A, Young W, Abecia L, Angarita E et al (2015) Rumen microbial community composition varies with diet and host, but a Core microbiome is found across a wide geographical range. Sci Rep 5:14567. https://doi.org/10.1038/srep14567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobson PN, Stewart CS (1997) In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem, 2nd edn. Blackie Academic & Professional, New York

    Chapter  Google Scholar 

  • Hook SE, André-Denis GW, Brian WM (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea (Vancouver, BC). 945785. https://doi.org/10.1155/2010/945785

  • Hristov AN, Rode LM, Beauchemin KA, Wverfel RL (1996) Effect of a commercial enzyme preparation on barley silage in vitro and in sacco dry matter degradability. Proc West Section Am Soc Anim Sci 47:282–284

    Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625. https://doi.org/10.1128/AEM.02812-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao J, Lu Q, Tan Z, Guan L, Zhou C, Tang S, Han X (2014) In vitro evaluation of effects of gut region and fiber structure on the intestinal dominant bacterial diversity and functional bacterial species. Anaerobe 28:168–177. https://doi.org/10.1016/j.anaerobe.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  • Khafipour E, Li S, Plaizier JC, Krause DO (2009) Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl Environ Microbiol 75:7115–7124. https://doi.org/10.1128/AEM.00739-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause DO, Nagaraja TG, Wright AD, Callaway TR (2013) Board-invited review: rumen microbiology: leading the way in microbial ecology. J Anim Sci 91:331–341. https://doi.org/10.2527/jas.2012-5567

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Tang MS, Lim YAL, Choy SH, Kurtz ZD, Cox LM (2014) Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl Trop Dis 8:e2880. https://doi.org/10.1371/journal.pntd.0002880

    Article  PubMed  PubMed Central  Google Scholar 

  • Lepkovsky S, Wagner M, Furuta F, Ozone K, Koike T (1964) The proteases, amylase and lipase of the intestinal contents of germ-free and conventional chickens. Poultry Sci 43:722–726

    Article  Google Scholar 

  • Lepkovsky S, Furuta F, Ozone K, Koike T (1966) The proteases, amylase and lipase of the pancreas and intestinal contents of germ-free and conventional rats. Br J Nutr 20:257–261

    Article  CAS  Google Scholar 

  • Levine JM, D’Antonio CM (1999) Elton revisited: A review of evidence linking diversity and invasibility. Oikos 87:15–26. https://doi.org/10.2307/3546992

    Article  Google Scholar 

  • Ling Z, Kong J, Liu F, Zhu H, Chen X, Wang Y et al (2010) Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics 11:488. https://doi.org/10.1186/1471-2164-11-488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marx H, Graf AB, Tatto NE, Thallinger GG, Mattanovich D, Sauer M (2011) Genome sequence of the ruminal bacterium Megasphaera Elsdenii. J Bacteriol 193(19):5578–5579. https://doi.org/10.1128/JB.05861-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison M, Miron J (2000) Adhesion to cellulose by Ruminococcus Albus: a combination of Cellulosomes and Pil-proteins? FEMS Microbiol Lett 185:109–115

    Article  CAS  Google Scholar 

  • Nakashima Y, Orskov ER, Hotten PM, Ambo K, Takase Y (1988) Rumen degradation of straw: 6. Effect of polysaccharidase enzymes on degradation characteristics of rice straw. Anim Prod 47:421–427

    CAS  Google Scholar 

  • O’ Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48. https://doi.org/10.1016/j.bbr.2014.07.027

    Article  CAS  Google Scholar 

  • Pendleton B (2000) The regulatory environment. In: Muirhead S (ed) Direct-fed microbial, enzyme and forage additive compendium. The Miller Publishing Company, Minnetonka, pp 49–55

    Google Scholar 

  • Penner GB, Khafipour E, Plaizier JC, Guan LL (2014) The microbiome and animal health. ADSA, ASAS, and CSAS Joint Annual Meeting, Kansas City, MO 20–24

    Google Scholar 

  • Plaizier JC, Krause DO, Gozho GN, McBride BW (2008) Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Veterinary J (London, England: 1997) 176:21–31

    Article  CAS  Google Scholar 

  • Plaizier JC, Li S, Tun HM, Khafipour E (2017) Nutritional models of experimentally-induced subacute ruminal acidosis (SARA) differ in their impact on rumen and hindgut bacterial communities in dairy cows. Frontiers in Microbiol 7:1–12.

    Google Scholar 

  • Queensland Government (2021) The viral role of rumen microbes. Department of agriculture and Fisheries

    Google Scholar 

  • Reddy BS, Pleasants JR, Wostmann BS (1969) Pancreatic enzymes in germ-free and conventional rats fed chemically defined, water-soluble diet free from natural substrates. J Nutr 97:327–334

    Article  CAS  Google Scholar 

  • Roze C, Sacquet E, Chariot J, Dubrasquet M, Accary JP (1977) Quelquescaracteristiques des secretions pancreatique et gastrique chez le rat axenique. Forum de Gastroenterologie, Paris

    Google Scholar 

  • Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology. Science 292(5519):1119–1122. https://doi.org/10.1126/science.1058830

    Article  CAS  PubMed  Google Scholar 

  • Seijfeers MJ, Segal HL, Miller LL (1963) Separation of pepsinogen I, pepsinogen II and pepsinogen III from human gastric mucosa. Am J Phys 20:1106–1116

    Article  Google Scholar 

  • Singh KM, Pandya PR, Parnerkar S, Tripathi AK, Rank DN, Kothari RK, Joshi CG (2011) Molecular identification of methanogenic Archae from Surti buffaloes (Bubalus Bubalis), reveals more hydrogenotrophic methanogens Phylotypes. Braz J Microbiol 42:132–113

    Article  CAS  Google Scholar 

  • Sissons JW (1981) Digestive enzymes of cattle. J Sci Food Agric 32:105–114

    Article  CAS  Google Scholar 

  • Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290

    Article  CAS  Google Scholar 

  • Stevens CE, Hume ID (1995) Comparative physiology of the vertebrate digestive system, 2nd edn. Cambridge, Cambridge University Press

    Google Scholar 

  • Stevens CE, Hume ID (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev 78(2):393–427

    Article  CAS  Google Scholar 

  • Suen G, Stevenson DM, Bruce DC, Chertkov O, Copeland A, Cheng J-F, Detter C et al (2011) Complete genome of the cellulolytic ruminal bacterium Ruminococcus Albus 7. J Bacteriol 193:5574–5575. https://doi.org/10.1128/JB.05621-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tizard IR, Jones SW (2018) The microbiota regulates immunity and immunologic diseases in dogs and cats. Vet Clin North Am Small AnimPract 48:307–322. https://doi.org/10.1016/j.cvsm.2017.10.008

    Article  Google Scholar 

  • Van SPJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell University Press, Ithaca, New York

    Google Scholar 

  • Yang WZ, Beauchemin KA, Rode LM (1999) Effects of energy feed additives on extent of digestion and milk production of lactating dairy cows. J Dairy Sci 82:391–403

    Article  CAS  Google Scholar 

  • Yoshida T, Pleasants JR, Reddy BS, Wostmann BS (1968) Efficiency of digestion in germ-free and conventional rabbits. Br J Nutr 22:723–737

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. Gaurav Deep Singh, Chancellor, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, India, for providing facility, space and resources to conduct this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhambri, A., Karn, S.K. (2022). Enzymes in the Digestion of Domesticated Animals. In: Mahajan, S., Varma, A. (eds) Animal Manure. Soil Biology, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-030-97291-2_16

Download citation

Publish with us

Policies and ethics

Navigation