Schizophrenia: A Disorder of Timing and Sensorimotor Integration During Decision-Making

  • Chapter
  • First Online:
Multidisciplinarity and Interdisciplinarity in Health

Summary

Sensorimotor integration and decision-making essentially contribute to time perception by integrating different sources of sensory stimuli and using them for performance in cognition and adaptation to the environment. Schizophrenia is a neurodevelopmental disorder where brain connectivity, and therefore, the integration of cognitive, motor and sensory information is disturbed. The present chapter discusses changes in sensorimotor integration and decision-making, such as in time interval judgment in schizophrenic patients. The results highlight that schizophrenic patients cannot build appropriate and accurate representations of the environment to perform tasks. Some defend schizophrenia as a disorder associated with abnormal neural inputs causing difficulty for these individuals to deal with decision-making feedback. Moreover, the hypothesis that these failures may be due to a dysconnectivity among different brain areas during the sensorimotor integration, and decision-making became attractive.

Connections between the superior parietal cortex and prefrontal cortex during timing and sensorimotor integration. The proposed inbuilt modular clock in the prefrontal cortex is responsible for the decision-making task. The superior parietal cortex does not function properly when there is reduced interference in the role of striatal neural oscillations in the representation of time intervals in the brain during decision-making.

The code of this chapter is 01110011 01,101,100 01,100,011 01,001,111 01,110,100 01,101,001 01,101,100 01,101,001 01,101,110 01,100,001 01,101,111.

“Space and time, in fact, are sides of the same coin. The time is relative and cannot be measured in exactly the same way everywhere, thus, the time passes differently for each individual shows a curvature in the fabric of space-time.”

Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Matthews WJ, Meck WH (2014) Time perception: the bad news and the good. Wiley Interdiscip Rev Cogn Sci 5(4):429–446

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marinho V, Oliveira T, Bandeira J, Pinto GR, Gomes A, Lima V, Magalhães F, Rocha K, Ayres C, Carvalho V, Velasques B, Ribeiro P, Orsini M, Bastos VH, Gupta D, Teixeira S (2018) Genetic influence alters the brain synchronism in perception and timing. J Biomed Sci 25(1):61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Starcke K, Brand M (2012) Decision making under stress: a selective review. Neurosci Biobehav Rev 36(4):1228–1248

    Article  PubMed  Google Scholar 

  4. Orsini CA, Moorman DE, Young JW, Setlow B, Floresco SB (2015) Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models. Neurosci Biobehav 58:147–167

    Article  Google Scholar 

  5. Frank MJ, Claus ED (2006) Anatomy of a decision: striato-orbito-frontal interactions in reinforcement learning, decision making, and reversal. Psychol 113(2):300–326

    Google Scholar 

  6. Bechara A, Damasio H, Damasio AR, Damasio (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10(3):295–307

    Google Scholar 

  7. Fontes R, Ribeiro J, Gupta DS, Machado D, Lopes-Júnior F, Magalhães F, Bastos VH, Rocha K, Marinho V, Lim G, Velasques B, Ribeiro P, Orsini M, Pessoa B, Leite MA, Teixeira S (2016) Time perception mechanisms at central nervous system. Neurol Int 8(1):5939

    Article  PubMed  PubMed Central  Google Scholar 

  8. Keedy SK, Rosen C, Khine T, Rajarethinam R, Janicak PG, Sweeney JA (2009) An fMRI study of visual attention and sensorimotor function before and after antipsychotic treatment in first-episode schizophrenia. Psychiatry Res 172(1):16–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harrington DL, Zimbelman JL, Hinton SC, Rao SM (2010) Neural modulation of temporal encoding, maintenance, and decision processes. Cereb Cortex 20(6):1274–1285

    Article  PubMed  Google Scholar 

  10. Assadi SM, Yücel M, Pantelis C (2009) Dopamine modulates neural networks involved in effort-based decision-making. Neurosci Biobehav Rev 33(3):383–393

    Article  CAS  PubMed  Google Scholar 

  11. Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168

    Article  PubMed  Google Scholar 

  12. Lee KH, Bhaker RS, Mysore A, Parks RW, Birkett PB, Woodruff PW (2009) Time perception and its neuropsychological correlates in patients with schizophrenia and in healthy volunteers. Psychiatry Res 166(2–3):174–183

    Article  PubMed  Google Scholar 

  13. Fan J, Semenzin E, Meng W, Giubilato E, Zhang Y, Critto A, Zabeo A, Zhou Y, Ding S, Wan J, He M, Lin C (2015) Ecological status classification of the Taizi River Basin, China: a comparison of integrated risk assessment approaches. Environ Sci Pollut Res Int 22(19):14738–14754

    Article  CAS  PubMed  Google Scholar 

  14. Teixeira S, Machado S, Paes F, Velasques B, Silva JG, Sanfim AL, Minc D, Anghinah R, Menegaldo LL, Salama M, Cagy M, Nardi AE, Pöppel E, Bao Y, Szelag E, Ribeiro P, Arias-Carrión O (2013) Time perception distortion in neuropsychiatric and neurological disorders. CNS and Neurol Disorders—Drug Targets 12:567–582

    Article  CAS  Google Scholar 

  15. Gómez J, Marín-Méndez JJ, Molero P, Atakan Z, Ortuño F (2014) Time perception networks and cognition in schizophrenia: Aa review and a proposal. Psychiatry Res 220:737–744

    Article  PubMed  Google Scholar 

  16. Elvevåg B, Brown GD, McCormack T, Vousden JI, Goldberg TE (2004) Identification of tone duration, line length, and letter position: an experimental approach to timing and working memory deficits in schizophrenia. J Abnorm Psychol 113(4):509–521

    Article  PubMed  Google Scholar 

  17. Bandeira J, Teixeira S, Rebouças Pinto G, Figueiredo R, Martins FC, Marinho V (2019) Association of SLC6A4 5-HTTLPR and 5HTR2A T102C in the neurobiological domains associated with time perception: genetic and behavioral correlates. jneuropsychiatry.org 9(6):2476–2484

    Google Scholar 

  18. Dorris MC, Olivier E, Munoz DP (2007) Competitive integration of visual and preparatory signals in the superior colliculus during saccadic programming. J Neurosci 27(19):5053–5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klaes C, Schneegans S, Schöner G, Gail A (2012) Sensorimotor learning biases choice behavior: a learning neural field model for decision making. PLoS Comput Biol 8(11):e1002774

    Google Scholar 

  20. Velasques B, Machado S, Paes F, Cunha M, Sanfim A, Budde H, Cagy M, Anghinah R, Basile LF, Piedade R, Ribeiro P (2011) Sensorimotor integration and psychopathology: motor control abnormalities related to psychiatric disorders. World J Biol Psychiatry 12(8):560–573

    Article  PubMed  Google Scholar 

  21. Hassiotis A, Brown E, Harris J, Helm D, Munir K, Salvador-Carulla L, Bertelli M, Baghdadli A, Wieland J, Novell-Alsina R, Cid J, Vergés L, Martínez-Leal R, Mutluer T, Ismayilov F, Emerson E (2019) Association of borderline intellectual functioning and adverse childhood experience with adult psychiatric morbidity. Findings from a British birth cohort. BMC Psychiatry 19(1):387

    Google Scholar 

  22. Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon DH, Mueller BA, Pearlson GD, Potkin SG, Preda A, Turner JA, Vaidya JG, van Erp TG, Calhoun VD (2014) Dynamic functional connectivity analysis reveals transient states of dysconnectivity in Schizophrenia. Neuroimage Clin 5:298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kent M, Bardi M, Hazelgrove A, Sewell K, Kirk E, Thompson B, Trexler K, Terhune-Cotter B, Lambert K (2017) Profiling co** strategies in male and female rats: potential neurobehavioral markers of increased resilience to depressive symptoms. Horm Behav 95:33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rowland LM, Spieker EA, Francis A, Barker PB, Carpenter WT, Buchanan RW (2009) White matter alterations in deficit schizophrenia. Neuropsychopharmacology 34(6):1514–1522

    Article  CAS  PubMed  Google Scholar 

  25. McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A (2017) Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am J Psychiatry 174(7):676–685

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mathis KI, Wynn JK, Breitmeyer B, Nuechterlein KH, Green MF (2011) The attentional blink in schizophrenia: isolating the perception/attention interface. J Psychiatr Res 45(10):1346–1351

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sweeney DJ (1999) Servo motor driven fill system. U.S. Patent No 5.865.226

    Google Scholar 

  28. Minzenberg MJ, Firl AJ, Yoon JH, Gomes GC, Reinking C, Carter CS (2010) Gamma oscillatory power is impaired during cognitive control independent of medication status in first-episode schizophrenia. Neuropsychopharmacology 35(13):2590–2599

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ravizza SM, Moua KC, Long D, Carter CS (2010) The impact of context processing deficits on task-switching performance in Schizophrenia. Schizophr Res 116(2–3):274–279

    Article  PubMed  Google Scholar 

  30. Lalanne L, Dufour A, Després O, Giersch A (2012) Attention and masking in schizophrenia. Biol Psychiatry 71(2):162–168

    Article  PubMed  Google Scholar 

  31. Giakoumaki SG, Roussos P, Pallis EG, Bitsios P (2011) Sustained attention and working memory deficits follow a familial pattern in schizophrenia. Arch Clin Neuropsychol 26(7):687–695

    Article  PubMed  Google Scholar 

  32. Bittencourt J, Velasques B, Teixeira S, Basile LF, Salles JI, Nardi AE, Budde H, Cagy M, Piedade R, Ribeiro P (2013) Saccadic eye movement applications for psychiatric disorders. Neuropsychiatr Dis Treat 9:1393–1409

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lieb K, Merklin G, Rieth C, Schüttler R, Hess R (1994) Preattentive information processing in schizophrenia. Schizophr Res 14(1):47–56

    Article  CAS  PubMed  Google Scholar 

  34. Gould RA, Mueser KT, Bolton E, Mays V, Goff D (2001) Cognitive therapy for psychosis in schizophrenia: an effect size analysis. Schizophr Res 48(2–3):335–342

    Article  CAS  PubMed  Google Scholar 

  35. Elahipanah A, Christensen BK, Reingold EM (2011) Controlling the spotlight of attention: visual span size and flexibility in schizophrenia. Neuropsychologia 49(12):3370–3376

    Article  PubMed  Google Scholar 

  36. Brittain PJ, Surguladze S, McKendrick AM, Ffytche DH (2010) Backward and forward visual masking in schizophrenia and its relation to global motion and global form perception. Schizophr Res 124(1–3):134–141

    Article  CAS  PubMed  Google Scholar 

  37. Ortuño F, Guillén-Grima F, López-Garcia P, Gómez J, Pla J (2011) Functional neural networks of time perception: challenge and opportunity for schizophrenia research. Schizophr Res 125:129–135

    Article  PubMed  Google Scholar 

  38. Leszczyńska A (2015) Facial emotion perception and schizophrenia symptoms. Psychiatr Pol 49(6):1159–1168

    Article  PubMed  Google Scholar 

  39. Su L, Wyble B, Zhou LQ, Wang K, Wang YN, Cheung EF, Chan RC (2015) Temporal perception deficits in schizophrenia: integration is the problem, not deployment of attentions. Sci Rep 5:9745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alústiza I, Radua J, Albajes-Eizagirre A, Domínguez M, Aubá E, Ortuño F (2016) Meta-analysis of functional neuroimaging and cognitive control studies in schizophrenia: preliminary elucidation of a core dysfunctional timing network. Front Psychol 7:192

    Article  PubMed  PubMed Central  Google Scholar 

  41. Voegler R, Becker MP, Nitsch A, Miltner WH, Straube T (2016) Aberrant network connectivity during error processing in patients with schizophrenia. J Psychiatry Neurosc JPN 41(2):E3–E12

    Article  Google Scholar 

  42. Potvin S, Marchand S (2008) Hypoalgesia in schizophrenia is independent of antipsychotic drugs: a systematic quantitative review of experimental studies. Pain 138(1):70–78

    Article  CAS  PubMed  Google Scholar 

  43. Carroll CA, Boggs J, O’Donnell BF, Shekhar A, Hetrick WP (2008) Temporal processing dysfunction in schizophrenia. Brain Cogn 67(2):150–161

    Article  PubMed  PubMed Central  Google Scholar 

  44. Monakhov M, Golimbet V, Abramova L, Kaleda V, Karpov V (2008) Association study of three polymorphisms in the dopamine D2 receptor gene and schizophrenia in the Russian population. Schizophr Res 100(1–3):302–307

    Article  PubMed  Google Scholar 

  45. Eisenberg DP, Berman KF (2010) Executive function, neural circuitry, and genetic mechanisms in Schizophrenia. Neuropsychopharmacol Rev 35:258–277

    Article  Google Scholar 

  46. Kunii Y, Miura I, Matsumoto J, Hino M, Wada A, Niwa S, Nawa H, Sakai M, Someya T, Takahashi H, Kakita A, Yabe H (2014) Elevated postmortem striatal t-DARPP expression in schizophrenia and associations with DRD2/ANKK1 polymorphism. Prog Neuropsychopharmacol Biol Psychiatry 53:123–128

    Article  CAS  PubMed  Google Scholar 

  47. Fehér Á, Juhász A, Pákáski M, Kálmán J, Janka Z (2014) Association between the 9 repeat allele of the dopamine transporter 40bp variable tandem repeat polymorphism and Alzheimer’s disease. Psychiatry Res 220(1–2):730–731

    Article  PubMed  CAS  Google Scholar 

  48. Ward RD, Kellendonk C, Kandel ER, Balsam PD (2012) Timing as a window on cognition in Schizophrenia. Neuropharmacology 62(3):1175–1181

    Article  CAS  PubMed  Google Scholar 

  49. Cordeiro Q, Vallada H (2014) Association study between the Taq1A (rs1800497) polymorphism and schizophrenia in a Brazilian sample. Arq Neuropsiquiatr 72(8):582–586

    Article  PubMed  Google Scholar 

  50. Bonnot O, de Montalembert M, Kermarrec S, Botbol M, Walter M, Coulon N (2011) Are impairments of time perception in schizophrenia a neglected phenomenon? J Physiol Paris 105:164–169

    Article  PubMed  Google Scholar 

  51. Zalla T, Verlut I, Franck N, Puzenat D, Sirigu A (2004) Perception of dynamic action in patients with schizophrenia. Psychiatry Res 128(1):39–51

    Article  PubMed  Google Scholar 

  52. Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113

    Article  CAS  PubMed  Google Scholar 

  53. Davalos DB, Rojas DC, Tregellas JR (2011) Temporal processing in schizophrenia: effects of task-difficulty on behavioural discrimination and neuronal responses. Schizophrenia Res 127:123–130

    Article  Google Scholar 

  54. Penney TB, Meck WH, Roberts SA, Gibbon J, Erlenmeyer-Kimling L (2005) Interval-timing deficits in individuals at high risk for schizophrenia. Brain Cogn 58(1):109–118

    Article  PubMed  Google Scholar 

  55. Roy M, Grondin S, Roy MA (2012) Time perception disorders are related to working memory impairments in schizophrenia. Psychiatry Res 200:159–166

    Article  PubMed  Google Scholar 

  56. Bertolino A, Fazio L, Caforio G, Blasi G, Rampino A, Romano R, Di Giorgio A, Taurisano P, Papp A, Pinsonneault J, Wang D, Nardini M, Popolizio T, Sadee W (2009) Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia. Brain: A J Neurol 132(Pt 2):417–425.

    Google Scholar 

  57. Yao J, Pan YQ, Ding M, Pang H, Wang BJ (2015) Association between DRD2 (rs1799732 and rs1801028) and ANKK1 (rs1800497) polymorphisms and schizophrenia: a meta-analysis. American journal of medical genetics. Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics 168B(1):1–13

    Google Scholar 

  58. Papageorgiou C, Karanasiou IS, Kapsali F, Stachtea X, Kyprianou M, Tsianaka EI, Karakatsanis NA, Rabavilas AD, Uzunoglu NK, Papadimitriou GN (2013) Temporal processing dysfunction in schizophrenia as measured by time interval discrimination and tempo reproduction tasks. Prog Neuropsychopharmacol Biol Psychiatry 40:173–179

    Article  PubMed  Google Scholar 

  59. Seeman P (2013) Schizophrenia and dopamine receptors. Eur Neuropsychopharmacol 23(9):999–1009

    Article  CAS  PubMed  Google Scholar 

  60. Chan RC, Xu T, Heinrichs RW, Yu Y, Wang Y (2010) Neurological soft signs in schizophrenia: a meta-analysis. Schizophr Bull 36(6):1089–1104

    Article  PubMed  Google Scholar 

  61. Ranganath C, Minzenberg MJ, Ragland JD (2008) The cognitive neuroscience of memory function and dysfunction in schizophrenia. Biol Psychiatry 64(1):18–25

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wiltgen BJ, Zhou M, Cai Y, Balaji J, Karlsson MG, Parivash SN, Li W, Silva AJ (2010) The hippocampus plays a selective role in the retrieval of detailed contextual memories. Curr Biol 20(15):1336–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hölscher C (2003) Time, space and hippocampal functions. Rev Neurosci 14:253–284

    Article  PubMed  Google Scholar 

  64. Tubridy S, Davachi L (2011) Medial temporal lobe contributions to episodic sequence encoding. Cereb Cortex 21:272–280

    Article  PubMed  Google Scholar 

  65. Eichenbaum H (2014) Time cells in the hippocampus: a new dimension for map** memories. Nat Rev Neurosci 15(11):732–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Buhusi CV, Meck WH (2002) Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci 116(2):291–297

    Article  CAS  PubMed  Google Scholar 

  67. Giersch A, van Assche M, Huron C, Luck D (2011) Visuo-perceptual organization and working memory in patients with schizophrenia. Neuropsychologia 49(3):435–443

    Article  PubMed  Google Scholar 

  68. Mayer JS, Park S (2012) Working memory encoding and false memory in schizophrenia and bipolar disorder in a spatial delayed response task. J Abnorm Psychol 121(3):784–794

    Article  PubMed  PubMed Central  Google Scholar 

  69. MacDonald CJ (2014) Prospective and retrospective duration memory in the hippocampus: is time in the foreground or background? philosophical transactions of the royal society of London. Series B Biolog Sci 369(1637):20120463

    Google Scholar 

  70. Nielson DM, Smith TA, Sreekumar V, Dennis S, Sederberg PB (2015) Human hippocampus represents space and time during retrieval of real-world memories. Proc Natl Acad Sci USA 112(35):11078–11083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Olsen EK, Bjorkquist OA, Bodapati AS, Shankman SA, Herbener ES (2015) Associations between trait anhedonia and emotional memory deficits in females with schizophrenia versus major depression. Psychiatry Res 230(2):323–330

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rannikko I, Murray GK, Juola P, Salo H, Haapea M, Miettunen J, Veijola J, Barnett JH, Husa AP, Jones PB, Järvelin MR, Isohanni M, Jääskeläinen E (2015) Poor premorbid school performance, but not severity of illness, predicts cognitive decline in schizophrenia in midlife. Schizophrenia Res Cognition 2(3):120–126

    Article  Google Scholar 

  73. Landgraf S, Steingen J, Eppert Y, Niedermeyer U, van der Meer E, Krueger F (2011) Temporal information processing in short- and long-term memory of patients with schizophrenia. PloS one 6(10):e26140

    Google Scholar 

  74. Kraus MS, Keefe RS, Krishnan RK (2009) Memory-prediction errors and their consequences in schizophrenia. Neuropsychol Rev 19(3):336–352

    Article  PubMed  Google Scholar 

  75. Rass O, Schacht RL, Buckheit K, Johnson MW, Strain EC, Mintzer MZ (2015) A randomized controlled trial of the effects of working memory training in methadone maintenance patients. Drug Alcohol Depend 156:38–46

    Article  PubMed  PubMed Central  Google Scholar 

  76. Deserno L, Sterzer P, Wüstenberg T, Heinz A, Schlagenhauf F (2012) Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. J Neurosci 32(1):12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Modi KK, Jana A, Ghosh S, Watson R, Pahan K (2017) Correction: a physically-modified saline suppresses neuronal apoptosis, attenuates tau phosphorylation and protects memory in an animal model of alzheimer's disease. PLoS One 12(6):e0180602

    Google Scholar 

  78. Gill PR, Mizumori SJY, Smith DM (2011) Hippocampal episode fields develop with learning. Hippocampus 21:1240–1249

    Article  PubMed  Google Scholar 

  79. Kluge M, Schacht A, Himmerich H, Rummel-Kluge C, Wehmeier PM, Dalal M, Hinze-Selch D, Kraus T, Dittmann RW, Pollmächer T, Schuld A (2014) Olanzapine and clozapine differently affect sleep in patients with schizophrenia: results from a double-blind, polysomnographic study and review of the literature. Schizophr Res 152(1):255–260

    Article  PubMed  Google Scholar 

  80. Yin B, Troger AB (2011) Exploring the 4th dimension: hippocampus, time, and memory revisited. Front Integr Neurosci 5:36

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jacobs NS, Allen TA, Nguyen N, Fortin NJ (2013) Critical role of the hippocampus in memory for elapsed time. J Neurosci 33:13888–13893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bressler SL (2003) Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharmacology 28(Suppl 1):S35–S39

    Article  PubMed  Google Scholar 

  83. Enriquez-Geppert S, Konrad C, Pantev C, Huster RJ (2010) Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. Neuroimage 51(2):877–887

    Article  PubMed  Google Scholar 

  84. Vaz-Serra A, Palha A, Figueira ML, Bessa-Peixoto A, Brissos S, Casquinha P, Damas-Reis F, Ferreira L, Gago J, Jara J, Relvas J, Marques-Teixeira J (2010) Cognição, cognição social e funcionalidade na esquizofrenia [Cognition, social cognition and functioning in schizophrenia]. Acta Med Port 23(6):1043–1058

    PubMed  Google Scholar 

  85. Weisbrod M, Kiefer M, Marzinzik F, Spitzer M (2000) Executive control is disturbed in schizophrenia: evidence from event-related potentials in a Go/NoGo task. Biol Psychiatry 47(1):51–60

    Article  CAS  PubMed  Google Scholar 

  86. Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23(35):11167–11177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ertekin E, Üçok A, Keskin-Ergen Y, Devrim-Üçok M (2017) Deficits in Go and NoGo P3 potentials in patients with schizophrenia. Psychiatry Res 254:126–132

    Article  PubMed  Google Scholar 

  88. Allman MJ, Meck WH (2012) Pathophysiological distortions in time perception and timed performance. Brain 135(Pt 3):656–677

    Article  PubMed  Google Scholar 

  89. D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378(6554):279–281

    Article  CAS  PubMed  Google Scholar 

  90. Sassi FC, Matas CG, de Mendonça LI, de Andrade CR (2011) Stuttering treatment control using P300 event-related potentials. J Fluency Disord 36(2):130–138

    Article  PubMed  Google Scholar 

  91. Almeida PR, Vieira JB, Silveira C, Ferreira-Santos F, Chaves PL, Barbosa F, Marques-Teixeira J (2011) Exploring the dynamics of P300 amplitude in patients with schizophrenia. Int J Psychophysiol 81(3):159–168

    Article  PubMed  Google Scholar 

  92. Gaspar PA, Ruiz S, Zamorano F, Altayó M, Pérez C, Bosman CA, Aboitiz F (2011) P300 amplitude is insensitive to working memory load in schizophrenia. BMC Psychiatry 11:29

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yeon YW, Polich J (2003) Meta-analysis of P300 and schizophrenia: patients, paradigms, and practical implications. Psychophysiology 40(5):684–701

    Article  Google Scholar 

  94. Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bestelmeyer PE (2012) The visual P3a in schizophrenia and bipolar disorder: effects of target and distractor stimuli on the P300. Psychiatry Res 197(1–2):140–144

    Article  PubMed  Google Scholar 

  96. Curtin A, Sun J, Zhao Q, Onaral B, Wang J, Tong S, Ayaz H (2019) Visuospatial task-related prefrontal activity is correlated with negative symptoms in schizophrenia. Sci Rep 9(1):9575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Frantseva M, Cui J, Farzan F, Chinta LV, Perez Velazquez JL, Daskalakis ZJ (2014) Disrupted cortical conductivity in schizophrenia: TMS-EEG study. Cereb Cortex 24(1):211–221

    Article  PubMed  Google Scholar 

  98. Seok JH, Park HJ, Lee JD, Kim HS, Chun JW, Son SJ, Oh MK, Ku J, Lee H, Kim JJ (2012) Regional cerebral blood flow changes and performance deficit during a sustained attention task in schizophrenia: (15) O-water positron emission tomography. Psychiatry Clin Neurosci 66(7):564–572

    Article  CAS  PubMed  Google Scholar 

  99. Yoon YS, Lee HS (2013) Projections from melanin-concentrating hormone (MCH) neurons to the dorsal raphe or the nuclear core of the locus coeruleus in the rat. Brain Res 1490:72–82

    Article  CAS  PubMed  Google Scholar 

  100. Williams SN, Undieh AS (2016) Dopamine-sensitive signaling mediators modulate psychostimulant-induced ultrasonic vocalization behavior in rats. Behav Brain Res 296:1–6

    Article  CAS  PubMed  Google Scholar 

  101. Magalhães F, Rocha K, Marinho V, Ribeiro J, Oliveira T, Ayres C, Bento T, Leite F, Gupta D, Bastos VH, Velasques B, Ribeiro P, Orsini M, Teixeira S (2018) Neurochemical changes in basal ganglia affect time perception in parkinsonians. J Biomed Sci 25(1):26

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bittencourt, J. et al. (2022). Schizophrenia: A Disorder of Timing and Sensorimotor Integration During Decision-Making. In: Rezaei, N. (eds) Multidisciplinarity and Interdisciplinarity in Health. Integrated Science, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-96814-4_6

Download citation

Publish with us

Policies and ethics

Navigation