Textures

  • Chapter
  • First Online:
Computer Vision
  • 484 Accesses

Abstract

Texture is an important characteristic of the appearance of objects in natural scenes and is a crucial cue in visual perception. It plays an important role in computer vision, graphics, and image encoding. Understanding texture is an essential part of understanding human vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 62.99
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 54.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 74.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We assume the histogram of each sub-band I(α) is normalized such that \(\sum _i H_i^{(\alpha )} =1\), and therefore all the \(\{\lambda _i^{(\alpha )}, i=1, \ldots , L\}\) computed in this algorithm have one extra degree of freedom for each α, i.e., we can increase \(\{\lambda _i^{(\alpha )}, i=1, \ldots , L\}\) by a constant without changing p(I; ΛK, SK). This constant will be absorbed by the partition function Z( ΛK).

  2. 2.

    We assume D →Z2 in the sense of van Hove, i.e., the ratio between the boundary and the size of D goes to 0.

  3. 3.

    We hope that the notation h(I) = h will not confuse the reader. The h on the left is a function of I for extracting statistics, while the h on the right is a specific value of the statistics.

  4. 4.

    In the i.i.d. case, \(q({\mathbf {I}}_{{D}_0}; h)\) is both the marginal distribution and the conditional distribution of q(I; h), while in random fields, we only consider the conditional distribution.

References

  1. Barbu, A. & Zhu, S.-C. (2005). Incorporating visual knowledge representation in stereo reconstruction. In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1 (Vol. 1, pp. 572–579).

    Google Scholar 

  2. Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., & Jacobsen, J.-H. (2018). Invertible residual networks. ar**v preprint ar**v:1811.00995.

    Google Scholar 

  3. Bergen, J. R., & Adelson, E. (1991). Theories of visual texture perception. Spatial Vision, 10, 114–134.

    Google Scholar 

  4. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 192–225.

    MathSciNet  MATH  Google Scholar 

  5. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees.

    MATH  Google Scholar 

  6. Chandler, D. (1987). Introduction to modern statistical mechanics. In D. Chandler (Ed.) Introduction to Modern Statistical Mechanics (pp. 288). Foreword by D. Chandler. Oxford University Press. ISBN-10: 0195042778. ISBN-13: 9780195042771, 1.

    Google Scholar 

  7. Cross, G. R., & Jain, A. K. (1983). Markov random field texture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 25–39.

    Article  Google Scholar 

  8. Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. JOSA A, 2(7), 1160–1169.

    Article  Google Scholar 

  9. De Bonet, J., & Viola, P. (1997). A non-parametric multi-scale statistical model for natural images. Advances in Neural Information Processing Systems, 10.

    Google Scholar 

  10. Diaconis, P., & Freedman, D. (1981). On the statistics of vision: the julesz conjecture. Journal of Mathematical Psychology, 24(2), 112–138.

    Article  MathSciNet  MATH  Google Scholar 

  11. Geman, S., & Geman, D. (1997). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(4), 380–393.

    MATH  Google Scholar 

  12. Gibbs, J. W. (1902). Elementary principles in statistical mechanics: Developed with especial reference to the rational foundations of thermodynamics. C. Scribner’s sons.

    Google Scholar 

  13. Griffiths, R. B., & Ruelle, D. (1971). Strict convexity (“continuity”) of the pressure in lattice systems. Communications in Mathematical Physics, 23(3), 169–175

    Article  MathSciNet  Google Scholar 

  14. Grindrod, P. (1996). The theory and applications of reaction-diffusion equations: patterns and waves. Clarendon Press.

    MATH  Google Scholar 

  15. Julesz, B. (1962). Visual pattern discrimination. IRE Transactions on Information Theory, 8(2), 84–92.

    Article  Google Scholar 

  16. Landau, L. D., & Lifshitz, E. M. (1959). Statistical physics, 5, 482.

    Google Scholar 

  17. Lanford, O. E. (1973). Statistical mechanics and mathematical problems. In Entropy and equilibrium states in classical statistical mechanics (pp. 1–113).

    Google Scholar 

  18. Murray, J. D. (1981). A pre-pattern formation mechanism for animal coat markings. Journal of Theoretical Biology, 88(1), 161–199.

    Article  MathSciNet  Google Scholar 

  19. Nitzberg, M., & Shiota, T. (1992). Nonlinear image filtering with edge and corner enhancement. IEEE Transactions on Pattern Analysis & Machine Intelligence, 14(8), 826–833.

    Article  Google Scholar 

  20. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  21. Turing, A. M. (1990). The chemical basis of morphogenesis. Bulletin of Mathematical Biology, 52(1–2), 153–197.

    Article  Google Scholar 

  22. Wu, Y. N., Zhu, S.-C., & Liu, X. (1999b). Equivalence of julesz and gibbs texture ensembles. In Proceedings of the Seventh IEEE International Conference on Computer Vision (Vol. 2, pp. 1025–1032). IEEE.

    Google Scholar 

  23. Wu, Y. N., Zhu, S. C., & Liu, X. (2000). Equivalence of julesz ensembles and frame models. International Journal of Computer Vision, 38(3), 247–265.

    Article  MATH  Google Scholar 

  24. Zhu, S.-C., & Mumford, D. (1998). Grade: Gibbs reaction and diffusion equations. In Sixth International Conference on Computer Vision (ICCV) (pp. 847–854). IEEE.

    Google Scholar 

  25. Zhu, S.-C., Wu, Y. N., & Mumford, D. (1998). Filters, random fields and maximum entropy (frame): Toward a unified theory for texture modeling. International Journal of Computer Vision, 27(2), 107–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, SC., Wu, Y.N. (2023). Textures. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-96530-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96530-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96529-7

  • Online ISBN: 978-3-030-96530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation