The Moisture Uniformity Control of the Draining Soil Layers in the Roadbed Construction

  • Conference paper
  • First Online:
International Scientific Siberian Transport Forum TransSiberia - 2021 (TransSiberia 2021)

Abstract

This research paper is devoted to the creation of the ground-penetrating radar technology for controlling the moisture content of draining soils that is necessary for ensuring the construction quality of the railway roadbed. For solving this problem, the main attention is paid to the preparation of the GPR radar equipment for the subsequent quantitative processing of the information obtained, the calculation of the change in the refractive index of the structural layer after moisture, the analysis of the change in the moisture content of the structural layer using the method of determining its reflectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shao, Z., Ma, Z.-J., Sheu, J.-B., Gao, H.O.: Evaluation of large-scale transnational high-speed railway construction priority in the belt and road region. Transport. Res. Part E: Logist. Transp. Rev. 117, 40–57 (2017)

    Article  Google Scholar 

  2. Code for design of high speed railway (2014) National Railway Administration

    Google Scholar 

  3. Mikolainis, M., Ustinovičius, M., Sližytė, D., Zhilkina, T.: Analysis of static and dynamic deformation modulus. Eng. Struct. Technol. 8(2), 79–84 (2016). https://doi.org/10.3846/2029882X.2016.1201434

    Article  Google Scholar 

  4. Technical Reference LGV as part of PPP or DSP Earthworks 2 (2010)

    Google Scholar 

  5. California High-Speed Train Project. TECHNICAL MEMORANDUM Earthwork and Track Bed Design Guidelines TM 2.6.7 (2009)

    Google Scholar 

  6. Ercoli, M., et al.: Integrated GPR and laboratory water content measures of sandy soils: from laboratory to field scale. Constr. Build. Mater. 159, 734–744 (2018)

    Article  Google Scholar 

  7. Shapovalov, V.L., Morozov, A.V., Vasilchenko, A.A., Okost, M.V., Yavna, V.A.: GPR calibration for determining the electrophysical properties of soil structural layers. Eng. Mining Geophys. 2020, 1–10 (2020). https://doi.org/10.3997/2214-4609.202051118

    Article  Google Scholar 

  8. Shapovalov, V.L., Morozov, A.V., Vasilchenko, A.A., Okost, M.V., Yavna, V.A.: GPR method for studying the drainage properties of sand layers. Eng. Mining Geophys. 2020, 1–10 (2020). https://doi.org/10.3997/2214-4609.202051119

    Article  Google Scholar 

  9. Xu, X., Peng, S., **a, Y., Ji, W.: The development of a multi-channel GPR system for roadbed damage detection. Microelectron. J. 45(11), 1542–1555 (2014)

    Article  Google Scholar 

  10. Wang, P., Hu, Z., Zhao, Y., Li, X.: Experimental study of soil compaction effects on GPR signals. J. Appl. Geophys. 126, 128–137 (2016). https://doi.org/10.1016/j.jappgeo.2016.01.019

    Article  Google Scholar 

  11. Forte, E., Dossi, M., Colucci, R.R., Pipana, M.: A new fast methodology to estimate the density of frozen materials by means of common offset GPR data. J. Appl. Geophys. 99, 135–145 (2013). https://doi.org/10.1016/j.jappgeo.2013.08.013

    Article  Google Scholar 

  12. **e, X., Qin, H., Yu, C., Liu, L.: An automatic recognition algorithm for GPR images of RC structure voids. J. Appl. Geophys. 99, 125–134 (2013)

    Article  Google Scholar 

  13. Saintenoy, A., Saintenoy, A., Hopmans, J.W.: Ground penetrating radar: water table detection sensitivity to soil water retention properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(4), 748–753 (2011)

    Article  Google Scholar 

  14. Leger, E., Saintenoy, A., Tucholka, P., Coquet, Y.: Hydrodynamic parameters of a sandy soil determined by ground-penetrating radar monitoring of Porchet infiltrations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 9(1), 188–200 (2016). https://doi.org/10.1109/JSTARS.2015.2464231

    Article  Google Scholar 

  15. Ling, D., Zhao, Y., Wang, Y., Huang, B.: Study on relationship between dielectric constant and water content of rock-soil mixture by time domain reflectometry. J. Sens. 10, 2827890 (2016). https://doi.org/10.1155/2016/2827890

    Article  Google Scholar 

  16. Orangi, A., Narsilio, G.A., Wang, Y.H., Ryu, D.: Experimental investigation of dry density effects on dielectric properties of soil–water mixtures with different specific surface areas. Acta Geotech. 15(5), 1153–1172 (2019). https://doi.org/10.1007/s11440-019-00805-x

    Article  Google Scholar 

  17. Lalomov, D.A., Lalomov, D.A., Glazunov, V.V.: Evaluation of the filtration coefficient of the sandy-clayey soils based on the joint data interpretation of the resistance methods and georadar. J. Min. Inst. Saint-Petersburg Mining Univ. 229, 3–12 (2018). https://doi.org/10.25515/PMI.2018.1.3

    Article  Google Scholar 

  18. Shapovalov, V.L., Okost, M.V., Yavna, A.A., Vasilchenko, V.A.: GPR-based moisture content determination in the ground construction layers during the construction of subgrades. In: 15th Conference and Exhibition Engineering and Mining Geophysics, vol. 2019, pp.124–130 (2019). https://doi.org/10.3997/2214-4609.201901698

  19. Khakiev, Z., Shapovalov, V., Kruglikov, A., Yavna, V.: GPR determination of physical parameters of railway structural layers. J. Appl. Geophys. 106, 139–145 (2014). https://doi.org/10.1016/j.jappgeo.2014.04.017

    Article  Google Scholar 

  20. Khakiev, Z.B., Kislitsa, K.U., Yavna, V.A.: Efficiency evaluation of ground-penetrating radar by the results of measurement of dielectric properties of soils. J. Appl. Phys. 112(12), 124909 (2012). https://doi.org/10.1063/1.4770470

    Article  Google Scholar 

  21. Szypłowska, A., et al.: Impact of soil salinity, texture and measurement frequency on the relations between soil moisture and 20 MHz–3 GHz dielectric permittivity spectrum for soils of medium texture. J. Hydrol. 579, 124155 (2019). https://doi.org/10.1016/j.jhydrol.2019.124155

    Article  Google Scholar 

  22. Khakiev, Z.B., Yavna, V.A., Ermolov, K.M.: Evaluating the effectiveness of methods based on reflected GPR signal for determining the clogging of the ballast layer. In: 12th Conference and Exhibition Engineering Geophysics (2016). https://doi.org/10.3997/2214-4609.201600312

Download references

Acknowledgements

This work was supported by the Federal Agency for Railway Transport (agreement dated February 25, 2021 No. 109-03-2021-019/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Yavna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yavna, V., Shapovalov, V., Vasilchenko, A., Morozov, A. (2022). The Moisture Uniformity Control of the Draining Soil Layers in the Roadbed Construction. In: Manakov, A., Edigarian, A. (eds) International Scientific Siberian Transport Forum TransSiberia - 2021. TransSiberia 2021. Lecture Notes in Networks and Systems, vol 403. Springer, Cham. https://doi.org/10.1007/978-3-030-96383-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96383-5_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96382-8

  • Online ISBN: 978-3-030-96383-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation