Hydrogen Production via Wastewater Electrolysis—An Integrated Approach Review

  • Conference paper
  • First Online:
Innovations in Smart Cities Applications Volume 5 (SCA 2021)

Abstract

Human activities generate enormous amounts of wastewater. The hydrogen production from this new resource has gained attention as an emergent technology. Incorporating photovoltaic energy production with different electrolysis systems which can treat wastewaters and produce hydrogen simultaneously will lead to an environmentally-friendly and sustainable hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V.G. Sharmila, J.R. Banu, S.-H. Kim, G. Kumar, A review on evaluation of applied pre-treatment methods of wastewater towards sustainable H2 generation energy efficiency analysis. Int. J. Hydrog. Energy 45(15), 8329–8345 (2020)

    Article  Google Scholar 

  2. E. Çokay, Y. Gürler, Effects of metals in wastewater on hydrogen gas production using electrohydrolysis. Int. J. Hydrog. Energy 45, 3407–3413 (2020)

    Article  Google Scholar 

  3. N. Klidi, D. Clematis, M. Delucchi, A. Gadri, S. Ammar, M. Panizza, Applicability of electrochemical methods to paper mill wastewater for reuse. Anodic oxidation with BDD and TiRuSnO2 anodes. J. Electroanal. Chem. 815, 16–23 (2018)

    Google Scholar 

  4. A.H. Bahman, M. Choolaei, A. Chaudhry, H. Qaalib, A highly-efficient hydrogen generation electrolysis system using alkaline zinc hydroxide solution. Int. J. Hydrog. Energy 44(1), 72–81 (2019)

    Google Scholar 

  5. M. Liu, F. Hof, M. Moro, G. Valenti, F. Paolucci, A. Pénicaud, Carbon supported noble metal nanoparticles as efficient catalysts for electrochemical water-splitting. Nanoscale 12, 20165–20170 (2020)

    Article  Google Scholar 

  6. L. Gong, K. Lan, X. Wang, X. Huang, P. Jiang, K. Wang, M. Yang, L. Ma, R. Li, Carbon-coated Co-Mo-P nanosheets supported on carbon cloth as efficient electrocatalyst for Hydrogen Evolution Reaction. Int. J. Hydrog. Energy 45(1), 544–552 (2020)

    Article  Google Scholar 

  7. G. Amikam, P. Nativ, Y. Gendel, Chlorine-free alkaline seawater electrolysis for hydrogen production. Int. J. Hydrog. Energy 43(13), 6504–6514 (2018)

    Article  Google Scholar 

  8. C. Chen, Q. Bai, J. Liu, Z. Wang, K. Cen, Characteristics and anode reaction of organic wastewater-assisted coal electrolysis for hydrogen production. Int. J. Hydrog. Energy 45(41), 20894–20903 (2020)

    Article  Google Scholar 

  9. S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, Y. Kiros, Advanced alkaline water electrolysis. Electrochim. Acta 82, 384–391 (2012)

    Article  Google Scholar 

  10. X. Huang, X. Xu, X. Luan, D. Cheng, CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy 68, 104332 (2020)

    Google Scholar 

  11. M. Bhavanari, K.-R. Lee, C.-J. Tseng, I.-H. Tang, H.-H. Chen, CuFe electrocatalyst for hydrogen evolution reaction in alkaline electrolysis. Int. J. Hydrog. Energy (2021)

    Google Scholar 

  12. T. Zhao, Y. Wang, S. Karuturi, K. Catchpole, Q. Zhang, C. Zhao, Design and operando/in situ characterization of precious-metal-free electrocatalysts for alkaline water splitting. Carbon Energy 2, 582–613 (2020)

    Article  Google Scholar 

  13. N. Yao, R. Meng, F. Wu, Z. Fan, G. Cheng, W. Luo, Oxygen-Vacancy-Induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolution reactions. Appl. Catal. B: Environ. 277, 119282 (2020)

    Google Scholar 

  14. A. Buttler, H. Spliethoff, Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renew. Sustain. Energy Rev. 82, 2440–2454 (2018)

    Article  Google Scholar 

  15. S.A. Grigoriev, V.N. Fateev, D.G. Bessarabov, P. Millet, Current status, research trends, and challenges in water electrolysis science and technology. Int. J. Hydrog. Energy 45, 26036–26058 (2020)

    Article  Google Scholar 

  16. D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation. Energ. Strat. Rev. 24, 38–50 (2019)

    Article  Google Scholar 

  17. Y. Wu, H. Lin, Standards and guidelines for grid-connected photovoltaic generation systems: a review and comparison. IEEE Trans. Ind. Appl. 53, 3205–3216 (2017)

    Article  Google Scholar 

  18. D. Xu, G. Wang, W. Yan, A novel adaptive command-filtered backstep** sliding mode control for PV grid-connected system with energy storage. Sol. Energy 178, 222–230 (2019)

    Article  Google Scholar 

  19. C.A. Pereira, P.M. Coelho, J.F. Fernandes, M.H. Gomes, Study of an energy mix for the production of hydrogen. Int. J. Hydrog. Energy 42(2), 1375–1382 (2017)

    Article  Google Scholar 

  20. Y. Cui, J. Zhu, S. Zoras, J. Zhang, Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid. Renew. Sustain. Energy Rev. 135, 110254 (2021)

    Google Scholar 

  21. R. Davarnejad, M. Nikseresht, Dairy wastewater treatment using an electrochemical method: Experimental and statistical study. J. Electroanal. Chem. 775, 364–373 (2016)

    Article  Google Scholar 

  22. P. Drogui, M. Asselin, S.K. Brar, H. Benmoussa, J.-F. Blais, Electrochemical removal of pollutants from agro-industry wastewaters. Sep. Purif. Technol. 61, 301–310 (2008)

    Article  Google Scholar 

  23. S. Rahman, M.S. Borhan, Electrolysis of swine manure effluents using three different electrodes Fe-Fe, Al-Al and Fe-Al. Am. J. Agric. Biol. Sci. 9(4), 490–502 (2014)

    Article  Google Scholar 

  24. H. Park, K.-H. Choo, H.-S. Park, J. Choi, M.R. Hoffmann, Electrochemical oxidation and microfiltration of municipal wastewater with simultaneous hydrogen production: Influence of organic and particulate matter. Chem. Eng. J. 215–216, 802–810 (2013)

    Article  Google Scholar 

  25. W. Cheng, N. Singh, J.A. Maciá-Agulló, G.D. Stucky, E.W. McFarland, J. Baltrusaitis, Optimal experimental conditions for hydrogen production using low voltage electrooxidation of organic wastewater feedstock. Int. J. Hydrog. Energy 37, 13304–13313 (2012)

    Article  Google Scholar 

  26. Y.-T. Lin, Y.-H. Wang, J.C.S. Wu, X. Wang, Photo-Fenton enhanced twin-reactor for simultaneously hydrogen separation and organic wastewater degradation. Appl. Catal. B: Environ. 281, 119517 (2021)

    Google Scholar 

  27. F. Kargi, S. Uzunçar, Valorization of cheese whey by electrohydrolysis for hydrogen gas production and COD removal. Waste Biomass Valoriz. 4, 517–528 (2013)

    Article  Google Scholar 

  28. H.R. Ghatak, S. Kumar, P.P. Kundu, Electrode processes in black liquor electrolysis and their significance for hydrogen production. Int. J. Hydrog. Energy 33, 2904–2911 (2008)

    Article  Google Scholar 

  29. M. Kokko, F. Bayerköhler, J. Erben, R. Zengerle, P. Kurz, S. Kerzenmacher, Molybdenum sulphides on carbon supports as electrocatalysts for hydrogen evolution in acidic industrial wastewater. Appl. Energy 190, 1221–1233 (2017)

    Article  Google Scholar 

  30. A. Caravaca, A. de Lucas-Consuegra, A.B. Calcerrada, J. Lobato, J.L. Valverde, F. Dorado, From biomass to pure hydrogen: electrochemical reforming of bio-ethanol in a PEM electrolyser. Appl. Catal. B 134–135, 302–309 (2013)

    Article  Google Scholar 

  31. F. Kargi, E.C. Catalkaya, Electrohydrolysis of landfill leachate organics for hydrogen gas production and COD removal. Int. J. Hydrog. Energy 36, 8252–8260 (2011)

    Article  Google Scholar 

  32. F. Kargi, E.C. Catalkaya, Hydrogen gas production from olive mill wastewater by electrohydrolysis with simultaneous COD removal. Int. J. Hydrog. Energy 36, 3457–3464 (2011)

    Article  Google Scholar 

  33. N.A. Oz, A.C.U. Eker, Simultaneous hydrogen production and pollutant removal from olive mill wastewaters using electrohydrolysis process. Chemosphere 232, 296–303 (2019)

    Article  Google Scholar 

  34. F. Kargi, S. Arikan, Hydrogen gas production from vinegar fermentation wastewater by electro-hydrolysis: effects of initial COD content. Int. J. Hydrog. Energy 38, 2701–2708 (2013)

    Article  Google Scholar 

  35. F. Kargi, E.C. Catalkaya, S. Uzuncar, Hydrogen gas production from waste anaerobic sludge by electrohydrolysis: effects of applied DC voltage. Int. J. Hydrog. Energy 36, 2049–2056 (2011)

    Article  Google Scholar 

  36. C.C. Yarımtepe, B. Türen, N.A. Oz, Hydrogen production from municipal wastewaters via electrohydrolysis process. Chemosphere 231, 168–172 (2019)

    Article  Google Scholar 

  37. K. Cho, M.R. Hoffmann, Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiOx/TiO2 anode and stainless steel cathode: current and energy efficiency. Appl. Catal. B 202, 671–682 (2017)

    Article  Google Scholar 

  38. L. Sharma, S. Prabhakar, V. Tiwari, A. Dhar, A. Halder, Optimization of EC parameters using Fe and Al electrodes for hydrogen production and wastewater treatment. Environ. Adv. 3, 100029 (2021)

    Google Scholar 

  39. G. Lourinho, P.S.D. Brito, Electrolytic treatment of swine wastewater: recent progress and challenges. Waste Biomass Valoriz. 12, 553–576 (2021)

    Article  Google Scholar 

  40. K. Thirugnanasambandham, V. Sivakumar, J.P. Maran, Optimization of process parameters in electrocoagulation treating chicken industry wastewater to recover hydrogen gas with pollutant reduction. Renew. Energy 80, 101–108 (2015)

    Article  Google Scholar 

  41. T. Hibino, K. Kobayashi, M. Ito, M. Nagao, M. Fukui, S. Teranishi, Direct electrolysis of waste newspaper for sustainable hydrogen production: an oxygen-functionalized porous carbon anode. Appl. Catal. B 231, 191–199 (2018)

    Article  Google Scholar 

  42. L. Yang, W. Liu, Z. Zhang, X. Du, J. Gong, L. Dong, Y. Denga, Hydrogen evolution from native biomass with Fe3+/Fe2+ redox couple catalyzed electrolysis. Electrochimica Acta 246, 1163–1173 (2017)

    Google Scholar 

  43. A.K. Pathak, R. Kothari, V.V. Tyagi, S. Anand, Integrated approach for textile industry wastewater for efficient hydrogen production and treatment through solar PV electrolysis. Int. J. Hydrog. Energy 45, 25768–25782 (2020)

    Article  Google Scholar 

  44. F.C. Marques, J.C.M. Silva, C.P. Libardi, R.R. de Carvalho, G.F. Sequine, G.M. Valane, Hydrogen production by photovoltaic-electrolysis using aqueous waste from ornamental stones industries. Renew. Energy 152, 1266–1273 (2020)

    Article  Google Scholar 

  45. F. Kargi, Comparison of different electrodes in hydrogen gas production from electrohydrolysis of wastewater organics using photovoltaic cells (PVC). Int. J. Hydrog. Energy 36, 3450–3456 (2011)

    Article  Google Scholar 

  46. S. Eker, F. Kargi, Hydrogen gas production from electrohydrolysis of industrial wastewater organics by using photovoltaic cells (PVC). Int. J. Hydrog. Energy 35, 12761–12766 (2010)

    Article  Google Scholar 

  47. E. Marzo, A. Gali, B. Lefevre, L. Bouchy, A. Vidal, J.L. Cortina, A. Fabre, Hydrogen and oxygen production using wastewater effluent treated with ultra-filtration and membrane distillation (Greenlysis). Procedia Eng. 44, 1744–1746 (2012)

    Article  Google Scholar 

  48. J. Choi, H.-H. Ou, S.H. Soong, H. Park, K.-H. Choo, M.R. Hoffmann, Sub-pilot-scale hybrid electrochemical system for hydrogen production and wastewater treatment using solar panel. In: ACS National Meeting Book of Abstracts, 2011 241st ACS National Meeting and Exposition, Anaheim, CA, 27 March 2011–31 March 2011

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Portuguese Foundation for Science and Technology (FCT), grant number UIDP/05567/2020. Special thanks to Trina Cairns (native English speaker and professional proofreader), who reviewed the text of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cartaxo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cartaxo, M., Fernandes, J., Gomes, M., Pinho, H., Nunes, V., Coelho, P. (2022). Hydrogen Production via Wastewater Electrolysis—An Integrated Approach Review. In: Ben Ahmed, M., Boudhir, A.A., Karaș, İ.R., Jain, V., Mellouli, S. (eds) Innovations in Smart Cities Applications Volume 5. SCA 2021. Lecture Notes in Networks and Systems, vol 393. Springer, Cham. https://doi.org/10.1007/978-3-030-94191-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94191-8_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94190-1

  • Online ISBN: 978-3-030-94191-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation