The Finite Cell Method for Simulation of Additive Manufacturing

  • Chapter
  • First Online:
Non-standard Discretisation Methods in Solid Mechanics

Abstract

Additive manufacturing processes are driven by moving laser-induced thermal sources which induce strong heat fluxes and fronts of phase change coupled to mechanical fields. Their numerical simulation poses several challenges, e.g. the evolution of the (possibly complex) domain as the specimen is produced and the differences in scales of the problem. In this work, the first aspect is addressed using the Finite Cell Method, an immersed approach that removes the need for meshing and is able to accurately handle complex geometries. For the second aspect we develop a framework with local refinement to selectively increase accuracy where needed, and derefinement in previously refined regions far from the laser source to keep the overall computational cost constant throughout the simulation. In this work, we present the essential theoretical fundament of the computational framework. Then, we show its application to model additive manufacturing processes in various examples, including experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AM Bench Benchmark Challenge CHAL-AMB2018-02-MP (2018). https://www.nist.gov/ambench/amb2018-02-description

  2. Special Metals Corporation (2018). http://www.speciametals.com

  3. A. Abedian, A. Düster, Equivalent legendre polynomials: Numerical integration of discontinuous functions in the finite element methods. Comput. Methods Appl. Mech. Eng. 343, 690–720 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Abedian, J. Parvizian, A. Düster, H. Khademyzadeh, E. Rank, Performance of different integration schemes in facing discontinuities in the finite cell method. Int. J. Comput. Methods 10(03), 1350002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. M.I. Al Hamahmy, I. Deiab, Review and analysis of heat source models for additive manufacturing. Int. J. Adv. Manuf. Technol. 106(3-4), 1223–1238 (2020)

    Google Scholar 

  6. I. Babuška, B.A. Szabo, I.N. Katz, The \(p\)-version of the finite element method. SIAM J. Numer. Anal. 18, 515–545 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Bog, N. Zander, S. Kollmannsberger, E. Rank, Weak imposition of frictionless contact constraints on automatically recovered high-order, embedded interfaces using the finite cell method. Comput. Mech. 61(4), 385–407 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Carraturo, C. Giannelli, A. Reali, R. Vázquez, Suitably graded thb-spline refinement and coarsening: Towards an adaptive isogeometric analysis of additive manufacturing processes. Comput. Methods Appl. Mech. Eng. 348, 660–679 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Carraturo, J. Jomo, S. Kollmannsberger, A. Reali, F. Auricchio, E. Rank, Modeling and experimental validation of an immersed thermo-mechanical part-scale analysis for laser powder bed fusion processes. Additive Manuf. 36(2020). https://doi.org/10.1016/j.addma.2020.101498

  10. D. Celentano, E. Oñate, S. Oller, A temperature-based formulation for finite element analysis of generalized phase-change problems. Int. J. Numer. Meth. Eng. 37(20), 3441–3465 (1994)

    Article  MATH  Google Scholar 

  11. B. Cheng, S. Price, J. Lydon, K. Cooper, K. Chou, On process temperature in powder-bed electron beam additive manufacturing: model development and validation. J. Manuf. Sci. Eng. 136(6), 061018 (2014)

    Google Scholar 

  12. M. Chiumenti, X. Lin, M. Cervera, W. Lei, Y. Zheng, W. Huang, Numerical simulation and experimental calibration of additive manufacturing by blown powder technology. Part I: thermal analysis. Rapid Protot J 23(2), 448–463 (2017)

    Google Scholar 

  13. M. Chiumenti, E. Neiva, E. Salsi, M. Cervera, S. Badia, J. Moya, Z. Chen, C. Lee, C. Davies, Numerical modelling and experimental validation in Selective Laser Melting. Addit. Manuf. 18, 171–185 (2017)

    Google Scholar 

  14. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric analysis: Towards Integration of CAD and FEM (Wiley, 2009)

    Google Scholar 

  15. D. D’Angella, S. Kollmannsberger, E. Rank, A. Reali, Multi-level Bézier extraction for hierarchical local refinement of isogeometric analysis. Comput. Methods Appl. Mech. Eng. 328, 147–174 (2018)

    Article  MATH  Google Scholar 

  16. D. D’Angella, A. Reali, Efficient extraction of hierarchical b-splines for local refinement and coarsening of isogeometric analysis. Comput. Methods Appl. Mech. Eng. 367, 113131 (2020)

    Google Scholar 

  17. D. D’Angella, N. Zander, S. Kollmannsberger, F. Frischmann, E. Rank, A. Schröder, A. Reali, Multi-level hp-adaptivity and explicit error estimation. Adv. Model. Simul. Eng. Sci. 3(1), 33 (2016)

    Article  Google Scholar 

  18. M. Dauge, A. Düster, E. Rank, Theoretical and numerical investigation of the finite cell method. Technical Report hal-00850602, CCSD (2013)

    Google Scholar 

  19. E.R. Denlinger, J. Irwin, P. Michaleris, Thermomechanical Modeling of Additive Manufacturing Large Parts. J. Manuf. Sci. Eng. 136(6), 061007 (2014)

    Google Scholar 

  20. P. Di Stolfo, A. Düster, S. Kollmannsberger, E. Rank, A. Schröder, A posteriori error control for the finite cell method. PAMM 19(1), e201900419 (2019)

    Google Scholar 

  21. P. Di Stolfo, A. Rademacher, A. Schröder, Dual weighted residual error estimation for the finite cell method. J. Numer. Math. 27(2), 101–122 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Düster, J. Parvizian, Z. Yang, E. Rank, The finite cell method for three-dimensional problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 197, 3768–3782 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Düster, O. Allix, Selective enrichment of moment fitting and application to cut finite elements and cells. Comput. Mech. 65(2), 429–450 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Düster, E. Rank, B.A. Szabó, The p-version of the finite element method and finite cell methods, in Encyclopedia of Computational Mechanics, vol. 2, ed. by E. Stein, R. Borst, T.J.R. Hughes (Wiley, Chichester, West Sussex, 2017), pp. 1–35

    Google Scholar 

  25. M. Elhaddad, N. Zander, T. Bog, L. Kudela, S. Kollmannsberger, J. Kirschke, T. Baum, M. Ruess, E. Rank, Multi-level \(hp\)-finite cell method for embedded interface problems with application in biomechanics. Int. J. Numer. Methods Biomed. Eng. 34(4), e2951 (2018)

    Google Scholar 

  26. D.R. Forsey, R.H. Bartels, Hierarchical B-spline Refinement, in Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’88, pages 205–212, New York, NY, USA, 1988. ACM

    Google Scholar 

  27. S. Ghosh, L. Ma, N. Ofori-Opoku, J.E. Guyer, On the primary spacing and microsegregation of cellular dendrites in laser deposited Ni-Nb alloys. Modell. Simul. Mater. Sci. Eng. 25(6), 065002 (2017)

    Google Scholar 

  28. C. Giannelli, B. Jüttler, S.K. Kleiss, A. Mantzaflaris, B. Simeon, J. Špeh, THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 299, 337–365 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Giannelli, B. Jüttler, H. Speleers, THB-splines: The truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29(7), 485–498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources. Metall. Trans. B 15(2), 299–305 (1984)

    Article  Google Scholar 

  31. M. Gouge, E. Denlinger, J. Irwin, C. Li, P. Michaleris, Experimental validation of thermo-mechanical part-scale modeling for laser powder bed fusion processes. Addit. Manuf. 29, 100771 (2019)

    Google Scholar 

  32. G. Greiner, K. Hormann. Interpolating and approximating scattered 3d-data with hierarchical tensor product b-splines, in In Surface Fitting and Multiresolution Methods (Vanderbilt University Press, 1997), pp. 163–172

    Google Scholar 

  33. J.C. Heigel, B.M. Lane, Measurement of the melt pool length during single scan tracks in a commercial laser powder bed fusion process. J. Manuf. Sci. Eng. 140(5) (2018)

    Google Scholar 

  34. S. Hubrich, P. Di Stolfo, L. Kudela, S. Kollmannsberger, E. Rank, A. Schrüder, A. Düster, Numerical integration of discontinuous functions: moment fitting and smart octree. Comput. Mech. 1–19 (2017). https://doi.org/10.1007/s00466-017-1441-0

  35. S. Hubrich, A. Düster, Numerical integration for nonlinear problems of the finite cell method using an adaptive scheme based on moment fitting. Comput. Math. Appl. 77(7), 1983–1997 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Hubrich, M. Joulaian, P.D. Stolfo, A. Schröder, A. Düster, Efficient numerical integration of arbitrarily broken cells using the moment fitting approach. Pamm 16, 201–202 (2016)

    Article  Google Scholar 

  37. L. Hug, S. Kollmannsberger, Z. Yosibash, E. Rank, A 3D benchmark problem for crack propagation in brittle fracture. Comput. Methods Appl. Mech. Eng. 364(2020). https://doi.org/10.1016/j.cma.2020.112905

  38. T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Dover Publications, 2000)

    Google Scholar 

  39. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. N. Keller, F. Neugebauer, H. Xu, V. Ploshikhin, Thermo-mechanical simulation of additive layer manufacturing of titanium aerospace structures, in Proceedings of the LightMAT Conference (2013)

    Google Scholar 

  41. T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C. Heigel, Y. Idell, Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater. 139, 244–253 (2017)

    Article  Google Scholar 

  42. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016)

    Article  Google Scholar 

  43. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev. 2(4), 041304 (2015)

    Google Scholar 

  44. S. Kollmannsberger, A. Özcan, J. Baiges, M. Ruess, E. Rank, A. Reali, Parameter-free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non-conforming patches. Int. J. Numer. Meth. Eng. 101(9), 1–30 (2014)

    MathSciNet  MATH  Google Scholar 

  45. S. Kollmannsberger, A. Özcan, M. Carraturo, N. Zander, E. Rank, A hierarchical computational model for moving thermal loads and phase changes with applications to selective laser melting. Comput. Math. Appl. 75(5), 1483–1497 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Kollmannsberger, M. Carraturo, A. Reali, F. Auricchio, Accurate prediction of melt pool shapes in laser powder bed fusion by the non-linear temperature equation including phase changes. Integrat. Mater. Manuf. Innov. 8(2), 167–177 (2019)

    Article  Google Scholar 

  47. S. Kollmannsberger, D. D’Angella, E. Rank, W. Garhuom, S. Hubrich, A. Düster, P. D. Stolfo, A. Schrüder, Spline- and hp-basis functions of higher differentiability in the finite cell method. GAMM-Mitteilungen 0(0), e202000004 (2019)

    Google Scholar 

  48. N. Korshunova, J. Jomo, G. Lékó, D. Reznik, P. Balázs, S. Kollmannsberger, Image-based material characterization of complex microarchitectured additively manufactured structures (2019). ar**v:1912.07415

  49. R. Kraft, Surface Fitting and Multiresolution Methods Adaptive and linearly independent multilevel B-splines. (Vanderbilt University Press, Nashville, 1997)

    Google Scholar 

  50. L. Kudela, S. Kollmannsberger, U. Almac, E. Rank, Direct structural analysis of domains defined by point clouds. Comput. Methods Appl. Mech. Eng. 358, 112581 (2020)

    Google Scholar 

  51. L. Kudela, N. Zander, T. Bog, S. Kollmannsberger, E. Rank, Efficient and accurate numerical quadrature for immersed boundary methods. Adv. Model. Simul. Eng. Sci. 2(1), 10 (2015)

    Article  Google Scholar 

  52. L. Kudela, N. Zander, S. Kollmannsberger, E. Rank, Smart octrees: accurately integrating discontinuous functions in 3d. Comput. Methods Appl. Mech. Eng. (2016)

    Google Scholar 

  53. Y. Lee, W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit. Manuf. 12, 178–188 (2016)

    Google Scholar 

  54. C. Li, J. Liu, X. Fang, Y. Guo, Efficient predictive model of part distortion and residual stress in selective laser melting. Addit. Manuf. 17, 157–168 (2017)

    Google Scholar 

  55. X. Liang, Q. Chen, L. Cheng, D. Hayduke, A.C. To, Modified inherent strain method for efficient prediction of residual deformation in direct metal laser sintered components. Comput. Mech. 64(6), 1719–1733 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. L.-E. Lindgren, Numerical modelling of welding. Comput. Methods Appl. Mech. Eng. 195(48–49), 6710–6736 (2006)

    Article  MATH  Google Scholar 

  57. L.-E. Lindgren, A. Lundbäck, M. Fisk, R. Pederson, J. Andersson, Simulation of additive manufacturing using coupled constitutive and microstructure models. Addit. Manuf. 12, 144–158 (2016)

    Google Scholar 

  58. J. Liu, A.C. To, Quantitative texture prediction of epitaxial columnar grains in additive manufacturing using selective laser melting. Addit. Manuf. 16, 58–64 (2017)

    Google Scholar 

  59. A. Lundbäck, L.-E. Lindgren, Modelling of metal deposition. Finite Elem. Anal. Des. 47(10), 1169–1177 (2011)

    Article  Google Scholar 

  60. N. Patil, D. Pal, H. Khalid Rafi, K. Zeng, A. Moreland, A. Hicks, D. Beeler, B. Stucker, A generalized feed forward dynamic adaptive mesh refinement and derefinement finite element framework for metal laser sintering-part i: formulation and algorithm development. J. Manuf. Sci. Eng. 137(4), 041001 (2015)

    Google Scholar 

  61. R.B. Patil, V. Yadava, Finite element analysis of temperature distribution in single metallic powder layer during metal laser sintering. Int. J. Mach. Tools Manuf. 47(7–8), 1069–1080 (2007)

    Article  Google Scholar 

  62. M. Petö, F. Duvigneau, S. Eisenträger, Enhanced numerical integration scheme based on image-compression techniques: application to fictitious domain methods. Adv. Model. Simul. Eng. Sci. 7(1), 21 (2020)

    Article  Google Scholar 

  63. P. Promoppatum, S.-C. Yao, P.C. Pistorius, A.D. Rollett, P.J. Coutts, F. Lia, R. Martukanitz, Numerical modeling and experimental validation of thermal history and microstructure for additive manufacturing of an Inconel 718 product. Progress in Additive Manufacturing (2018)

    Google Scholar 

  64. D. Riedlbauer, P. Steinmann, J. Mergheim, Thermomechanical finite element simulations of selective electron beam melting processes: performance considerations. Comput. Mech. 54(1), 109–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. M. Ruess, D. Schillinger, Y. Bazilevs, V. Varduhn, E. Rank, Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int. J. Numer. Meth. Eng. 95(10), 811–846 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  66. D. Schillinger, M. Ruess, N. Zander, Y. Bazilevs, A. Düster, E. Rank, Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput. Mech. 50, 445–478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. D. Schillinger, I. Harari, M.-C. Hsu, D. Kamensky, S.K.F. Stoter, Y. Yu, Y. Zhao, The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements. Comput. Methods Appl. Mech. Eng. 309, 625–652 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  68. E. Soylemez, High deposition rate approach of selective laser melting through defocused single bead experiments and thermal finite element analysis for Ti-6Al-4V. Addit. Manuf. 31, 100984 (2020)

    Google Scholar 

  69. P.D. Stolfo, A. Schröder, N. Zander, S. Kollmannsberger, An easy treatment of hanging nodes in hp-finite elements. Finite Elem. Anal. Des. 121, 101–117 (2016)

    Article  MathSciNet  Google Scholar 

  70. B. Szabó and I. Babuška, Finite Element Analysis (Wiley, 1991)

    Google Scholar 

  71. B. Wassermann, S. Kollmannsberger, T. Bog, E. Rank, From geometric design to numerical analysis: A direct approach using the finite cell method on constructive solid geometry. Comput. Methods Appl. Mech. Eng. 74(7), 1703–1726 (2017). High-Order Finite Element and Isogeometric Methods 2016

    Google Scholar 

  72. B. Wassermann, S. Kollmannsberger, S. Yin, S. Kudela, E. Rank, Integrating CAD and numerical analysis: “Dirty geometry’’ handling using the Finite Cell Method. Comput. Methods Appl. Mech. Eng. 351, 808–835 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  73. Z. Yan, W. Liu, Z. Tang, X. Liu, N. Zhang, M. Li, H. Zhang, Review on thermal analysis in laser-based additive manufacturing. Opt. Laser Technol. 106, 427–441 (2018)

    Article  Google Scholar 

  74. Y. Yang, M. Allen, T. London, V. Oancea, Residual strain predictions for a powder bed fusion inconel 625 single cantilever part. Integrat. Mater. Manuf. Innov. 8(3), 294–304 (2019)

    Article  Google Scholar 

  75. N. Zander, T. Bog, M. Elhaddad, F. Frischmann, S. Kollmannsberger, E. Rank, The multi-level hp-method for three-dimensional problems: Dynamically changing high-order mesh refinement with arbitrary hanging nodes. Comput. Methods Appl. Mech. Eng. 310, 252–277 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kollmannsberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kollmannsberger, S., D’Angella, D., Carraturo, M., Reali, A., Auricchio, F., Rank, E. (2022). The Finite Cell Method for Simulation of Additive Manufacturing. In: Schröder, J., Wriggers, P. (eds) Non-standard Discretisation Methods in Solid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-92672-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92672-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92671-7

  • Online ISBN: 978-3-030-92672-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation