Structural Design and Testing of Digitally Manufactured Concrete Structures

  • Chapter
  • First Online:
Digital Fabrication with Cement-Based Materials

Abstract

The form freedom enabled by digital fabrication with concrete technologies provides advantages for a wide range of concrete based objects, from architectural to structural elements. The current chapter focuses on the specifics of structural design and engineering of DFC with emphasis on those technologies based on Additive Manufacturing with extrusion. Since it is a new and innovative way to build, a clear common approach to structural engineering has not yet been developed. As a result, this chapter aims to introduce the specific challenges of structural design and engineering with the additive manufacturing technology, providing an overview of structural typologies that have been developed (especially concerning the reinforcement strategies, including fibre reinforcement). Furthermore, the structural principles adopted in DFC and the codified approaches used in conventional reinforced concrete is compared, and putative structural testing procedures and validation methods for DFC are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • (2002) RILEM TC 162-TDF Design of steel fibre reinforced concrete using the σ-w method: principles and applications. Materials and Structures, 35(5), 262–278.

    Google Scholar 

  • (2003) Final recommendation of RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: sigma-epsilon-design method. Materials and Structures, 36(8), 560–567.

    Google Scholar 

  • (2005) EN 14651:2005, Test method for metallic fibre concrete - Measuring the flexural tensile strength (limit of proportionality (LOP), residual).

    Google Scholar 

  • Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2013). Relation between fibre distribution and post-cracking behaviour in steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 51, 57–66.

    Google Scholar 

  • Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2015a). Tensile stress-crack width law for steel fibre reinforced self-compacting concrete obtained from indirect (splitting) tensile tests. Cement and Concrete Composites, 57, 153–165.

    Google Scholar 

  • Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2015b). Time-dependent flexural behaviour of cracked steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 72, 21–36.

    Google Scholar 

  • Akbarzadeh, Masoud, Tom Van Mele, and Philippe Block. (2015). On the equilibrium of funicular polyhedral frames and convex polyhedral force diagrams. Computer-Aided Design, 63, 118–128.

    Google Scholar 

  • Abrishambaf, A., Cunha, V. M., and Barros, J. A. (2016). A two-phase material approach to model steel fibre reinforced self-compacting concrete in panels. Engineering Fracture Mechanics, 162, 1–20.

    Google Scholar 

  • Apis-cor. (2017). Apis Cor - construction technology. Available: http://apiscor.com/en/faq/texnologiya-stroitelstva/. [Accessed: 29-Dec-2017].

  • Asprone, D., Menna, C., Bos, F. P., Salet, T. A. M., Mata-Falcón, J., and Kaufmann, W. (2018). Rethinking reinforcement for digital fabrication with concrete. Cement and Concrete Research, 112, 111–121. ISSN 0008-8846. https://doi.org/10.1016/j.cemconres.2018.05.020. https://www.sciencedirect.com/science/article/pii/S0008884618300309

  • Asprone, D., Auricchio, F., Menna, C., and Mercuri, V. (2018). 3D printing of reinforced concrete elements: Technology and design approach. Constr. Build. Mater. 165. doi:https://doi.org/10.1016/j.conbuildmat.2018.01.018.

  • Baril, M. A., Sorelli, L., Rethore, J., Baby, F., Toutlemonde, F., Ferrara, L., Bernardi, S., and Fafard, M. (2016). Effect of Casting Flow Defects on the Crack Propagation in UHPFRC Thin Slabs by Means of Stereovision Digital Image Correlation. Construction and Building Materials, 129, 182–192.

    Google Scholar 

  • Bos, R. Wolfs, Z. Ahmed, and T. Salet. (2019). Large Scale Testing of Digitally Fabricated Concrete (DFC) Elements. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 129–147.

    Google Scholar 

  • Bos, F. P., Ahmed, Z. Y., Jutinov, E. R., et al. (2017). Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete. Materials (Basel, Switzerland), 10(11).

    Google Scholar 

  • Bos, F. P., Wolfs, R. J. M., Ahmed, Z. Y., and Salet, T. A. M. (2016). Additive manufacturing of concrete in construction: potentials and challenges. Virtual and Physical Prototy**, 11(3), 209–225.

    Google Scholar 

  • Bran Anleu, P. C., Wangler, T., and Flatt, R. J. (2018). Chloride Ingress Through Cold Joints in Digitally Fabricated Concrete by micro-XRF Map**.

    Google Scholar 

  • Burke, P. L., and Shah, S. P. (1999). Durability of extruded thin sheet PVA fiber-reinforced cement composites. In: ACI SP-190 high performance fiber-reinforced concrete thin sheet products, pp. 133–64.

    Google Scholar 

  • Bridge Nijmegen (https://www.rijkswaterstaat.nl/nieuws/2019/03/nijmegen-krijgt-langste-betonnen-3d-geprinte-voetgangersbrug-ter-wereld.aspx).

  • Buswell, R. A., Leal de Silva, W. R., Jones, S. Z., and Dirrenberger, J. (2018). 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research, 112, 37–49. https://doi.org/10.1016/j.cemconres.2018.05.006.

  • Buswell, R. A., da Silva, W. R, Bos, F. P., Schipper, R., Lowke, D., Hack, N., Kloft, H., Mechtcherine, V., Wangler, T., and Roussel, N. (2020). A process classification framework for defining and describing Digital Fabrication with Concrete. Cement and Concrete Research, Special Issue for Digital Concrete.

    Google Scholar 

  • Cunha V. M. C. F., Barros, J. A. O., and Sena-Cruz, J. M. (2012). A finite element model with discrete embedded elements for fibre reinforced composites. Comput Struct J, 94–95, 22–33.

    Google Scholar 

  • Cunha, V. M. C. F, Barros, J. A. O., Sena-Cruz, J. M. (2011). An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete. Cem Concr Res J, 41, 64–76.

    Google Scholar 

  • di Prisco, M., Ferrara, L., and Lamperti, M. G. L. (2013). Double Edge Wedge Splitting (DEWS): an indirect tension test to identify post-cracking behaviour of fibre reinforced cementitious composites. Materials and Structures, 46(11), 1893–1918.

    Google Scholar 

  • DFAB House. http://www.dfab.ch/tag/dfab-house/.

  • EN 1990:2002 Basis of Structural Design.

    Google Scholar 

  • Feng, P., Meng, X., Chen, J. F., and Ye, L. (2015). Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials 93, 486–497.

    Google Scholar 

  • Ferrara, L. (2015). Tailoring the orientation of fibres in High Performance Fibre Reinforced Cementitious Composites: part 1 - experimental evidence, monitoring and prediction. Journal of Materials and Structures Integrity, 9, 1/2/3, 72–91.

    Google Scholar 

  • Ferrara, L., Ozyurt, N., and di Prisco, M. (2011). High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow” induced fibre orientation. Materials and Structures, 44(1), 109–128.

    Google Scholar 

  • Ferrara, L., Cremonesi, M., Faifer, M., Toscani, S., Sorelli, L., Baril, M. A., Réthoré, J., Baby, F., Toutlemonde, F., and Bernardi, S. (2017). Structural elements made with highly flowable UHPFRC: correlating Computational Fluid Dynamics (CFD) predictions and non-destructive survey of fibre dispersion with failure modes. Engineering Structures, 133, 151–171.

    Google Scholar 

  • Ferrara, L. (2014). Fibre reinforced SCC. In Mechanical Properties of Self-Compacting Concrete. State of the Art Report of the RILEM Technical Committee 228-MPS on Mechanical Properties of SCC, K.H. Khayat and Geert de Schutter, eds. (Chapter 6), pp. 161–220, Springer, 2014, ISBN 978–3–319–03244–3.

    Google Scholar 

  • Ferrara, L., Park, Y. D., Shah, S. P. (2007). A method for mix-design of fibre reinforced self compacting concrete. Cement and Concrete Research, 37, 957–971.

    Google Scholar 

  • Figuereido, S. C., Romero Rodruiguez, C., Ahmed, Z. Y., Bos, D. H., Xu. Y., Salet, T. M., Copuroglu, O., Schlangen, E., and Bos, F. P. (2019). 2An approach to develop printable strain hardening cementitious composites. Materials and Design, 169, 107651.

    Google Scholar 

  • fib Model Code 2010 – 2 vol. Bulletin 55 and 56.

    Google Scholar 

  • FIB. (2010). fib Model Code for Concrete Structures. Ernst & Sohn, October 2013. ISBN: 978–3–433–03061–5.

    Google Scholar 

  • Fromm, Asko, Schein, Markus, Grohmann. (2017). Manfred: Reinforcement of Additive Manufactured Concrete Elements. In: Bögle, A., Grohmann, M., (Eds.), Proceedings of the IASS Annual Symposium 2017 September, 2017, Hamburg, Germany Annette Bögle, Manfred Grohmann (eds.). Interfaces: architecture. Engineering. Science 25 - 28th; 2017.

    Google Scholar 

  • Hambach, M., and Volkmer, D. (2017). Properties of 3D-printed fiber-reinforced Portland cement paste. Cement and Concrete Composites, 79, 62–70.

    Google Scholar 

  • https://www.enr.com/articles/45002-army-researchers-refine-3d-printed-concrete-barracks.

  • http://www.xtreee.eu/projects-yrys-concept-house/.

  • http://www.winsun3d.com/En/News/news_inner/id/461.

  • https://cybe.eu/portfolio-item/rdrone_laboratory_3dprinting_on-site_in_the_desert_of_dubai/.

  • https://all3dp.com/worlds-first-3d-printed-bicycle-bridge-opens-in-netherlands/.

  • Kreiger, E., Kreiger, M., and Case, M. (2019). Development of the Construction Processes for Reinforced Additively Constructed Concrete. Additive Manufacturing. https://doi.org/10.1016/j.addma.2019.02.015

  • Knitcrete, E. T. H. Zurich: Knitcandela project. (2018). [Online]. Available at: https://www.ethz.ch/en/news-and-events/eth-news/news/2018/10/knitted-concrete.html. [Accessed on: 24.04.2019]. Image credits: Mariana Popescu.

  • Kuder, K. G., and Shah, S. P. (2003). Effects of pressure on resistance to freezing and thawing of fiber-reinforced cement board. ACI Mater J, 100(6), 463–468.

    Google Scholar 

  • Kuder, K. G., and Shah, S. P. (2010). Processing of high-performance fiber-reinforced cement-based composites. Construction and Building Materials, 24, 181–186.

    Google Scholar 

  • Keita, E., Bessaies-Bey, H., Zuo, W., Belin, P., and Roussel, N. (2019). Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. Cement and Concrete Research, 123, 105787. ISSN 0008-8846. https://doi.org/10.1016/j.cemconres.2019.105787. https://www.sciencedirect.com/science/article/pii/S0008884618313760

  • Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G. F., and Thorpe, T. (2012). Hardened properties of high-performance printing concrete. Cement and Concrete Research, 42, 558–566.

    Google Scholar 

  • Labonette, N., Rønnquist, A., Manum, B., and Rüther, P. (2016). Additive construction: State-of-the-art, challenges and opportunities. Automation in Construction, 72(3), 347–366.

    Google Scholar 

  • Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G. F., and Thorpe, T. (2012). Developments in construction-scale additive manufacturing processes. Autom. Constr., 21, 262–268. doi:https://doi.org/10.1016/J.AUTCON.2011.06.010.

  • Lloret-Fritschi, E., Scotto, F., Gramazio, F., Kohler, M., Graser, K., Wangler, T., Reiter, L., Flatt, R.J., and Mata-Falcón, J. (2019). Challenges of Real-Scale Production with Smart Dynamic Casting. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 299–310.

    Google Scholar 

  • Martinie, L., Rossi, P., and Roussel, N. (2010). Rheology of fibre reinforced cementitious materials: classifications and prediction. Cement and Concrete Research, 40, 226–240.

    Google Scholar 

  • Martinie, L., and Roussel, N. (2011). Simple tools for fibre orientation prediction in industrial practice. Cement and Concrete Research, 41, 993-1000.

    Google Scholar 

  • Marti, P. (1985). Truss models in detailing. Concrete International, 7(12), 66–73.

    Google Scholar 

  • Martens, P., Mathot, M., Bos, F. P., and Coenders, J. (2017). Optimising 3D printed concrete structures using topology optimisation. High Tech Concrete: where technology and engineering meet: Proceedings of the 2017 fib Symposium, held in Maastricht, The Netherlands, June 12–14, 2017. Hordijk, D. A., and Luković, M. (eds.). Cham: Springer, pp. 301–309 9.

    Google Scholar 

  • Martens, P. (2018). Optimising 3D Printed Concrete Structures: Concrete additive manufacturing and topology optimisation, MSc graduation thesis, TU Delft, the Netherlands.

    Google Scholar 

  • Mesh Mould. (2019). ETH Zurich: DFAB HOUSE project [Online]. Available at: https://dfabhouse.ch/mesh_mould/. [Accessed on: 24.04.2019]. Image credits: Gramazio Kohler Research, ETH Zurich.

  • Model Code 2010 - Final draft, Vol 1. (350 pp, ISBN 978–2–88394–105–2, March 2012).

    Google Scholar 

  • Marchment, T., **a, M., Dodd, E., Sanjayan, J., and Nematollahi, B. (2017). Effect of delay time on the mechanical properties of extrusion-based 3D printed concrete. In 34th International Symposium on Automation and Robotics in Construction.

    Google Scholar 

  • Nerella, V. N., Ogura, H., and Mechtcherine, V. (2018 July). Incorporating reinforcement into digital concrete construction. Proceeding of the annual Symposium of the IASS—International Association for Shell and Spatial Structures: Creativity in Structural Design, July 2018, MIT, Boston.

    Google Scholar 

  • Nerella, V. M., Krause, M., Näther, M., and Mechtcherine, V. (2016). Studying printability of fresh concrete for formwork free Concrete onsite 3D Printing technology (CONPrint3D). In Proceeding for the 25th Conference on Rheology of Building Materials, Regensburg, Germany.

    Google Scholar 

  • Nerella, V. N., Hempel, S., and Mechtcherine, V. (2018). Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D-Printing. doi:https://doi.org/10.20944/preprints201810.0067.v1.

  • Ogura, Nerella, V., and Mechtcherine. V. (2018). Develo** and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D printing. Materials, 11, 1375. doi:https://doi.org/10.3390/ma11081375. 18.pp.

  • Panda, B., Noor Mohamed, N. A., Tay, Y. W. D., and Tan, M. J. (2019). Bond Strength in 3D Printed Geopolymer Mortar. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018. Springer International Publishing, pp. 200–206.

    Google Scholar 

  • Panda, B., Paul, S. V., and Tan, M. J. (2017). Anisotropic mechanical performance of 3D printed fibre reinforced sustainable construction material. Materials Letters, 2019, 146–149.

    Google Scholar 

  • Panda, B., Paul, S. C., Mohamed, N. A. N., Tay, Y. W. D., and Tan, M. J. (2018). Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement, 113, 108–116.

    Google Scholar 

  • Paul, S. C., Y. W. D. Tay, P. B., and Tan, M. J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering, 18, 311–319.

    Google Scholar 

  • Pavilion uibk (to be published shortly).

    Google Scholar 

  • Peled, A., Cyr, M., and Shah, S. P. (2000). High content of fly ash (Class F) in extruded ementitious composites. ACI Mater J, 97(5), 509–517.

    Google Scholar 

  • Peled, A., and Shah, S. P. (2003). Processing effects in cementitious composites: extrusion and casting. J Mater Civil Eng, 15(2), 192–199.

    Google Scholar 

  • Rippmann, M., Liew, A., Van Mele, T., Block, P. (2018). Design, fabrication and testing of discrete 3D sand-printed floor prototypes. Materials Today Communications, 15, 254–259. Doi: https://doi.org/10.1016/j.mtcomm.2018.03.005

  • Rosanna Napolitano, Costantino Menna, Domenico Asprone, Lorenzo del Giudice. Experimental and numerical assessment of the interface behaviour of 3D Printed concrete elements w/wo interlaminar reinforcement. Cement and concrete composites (submitted).

    Google Scholar 

  • Radtke, F. K. F., Simone, A., Sluys, L. J. (2010). A computational model for failure analysis of fibre reinforced concrete with discrete treatment of fibres. Engineering Fracture Mechanics, 77(4), 597–620.

    Google Scholar 

  • Radtke, F. K. F., Simone, A., and Sluys, L. J. (2011). A partition of unity finite element method for simulating non‐linear debonding and matrix failure in thin fibre composites. International Journal for Numerical Methods in Engineering, 86(4-5), 453–476.

    Google Scholar 

  • Salet, T. A. M., and Fietsbrug Nijmegen. (2019). Protocol voor de veiligheid van een voorgespannen geprinte betonnen fiets- en voetgangersbrug, [rapport ref number to be added], for Rijkswaterstaat. Eindhoven University of Technology, Netherlands.

    Google Scholar 

  • Soltan, D. G., and Li, V. C. (2018). A self-reinforced cementitious composite for building-scale 3D printing. Cement and Concrete Composites, 90, 1–13.

    Google Scholar 

  • Soetens, T., and Matthys, S. (2014). Different methods to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete. Construction and Building Materials, 73, 458–471.

    Google Scholar 

  • Schlaich, J., Schäfer, K., and Jennewein, M. (1987). Toward a consistent design of structural concrete. PCI Journal, 32(3), 74–150.

    Google Scholar 

  • Stefanoni, M., Angst, U., and Elsener, B. (2019). Corrosion Challenges and Opportunities in Digital Fabrication of Reinforced Concrete. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 225–233.

    Google Scholar 

  • Schröfl, C., Nerella, V. N., and Mechtcherine, V. (2019). Capillary Water Intake by 3D-Printed Concrete Visualised and Quantified by Neutron Radiography. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 217–224.

    Google Scholar 

  • Smart Dynamic Casting. (2019). ETH Zurich: DFAB HOUSE project [Online]. Available at: https://dfabhouse.ch/smart-dynamic-casting/. [Accessed on: 24.04.2019].

  • Srinivasan, S., Deford, D., and Shah, P. (1999). The use of extrusion rheometry in the development of extrudate fibre-reinforced cement composites. Concrete Science and Engineering, 1(11), 26–36.

    Google Scholar 

  • Theo A. M. Salet, Zeeshan Y. Ahmed, Freek P. Bos, and Hans L. M. Laagland. (2018). Design of a 3D printed concrete bridge by testing. Virtual and Physical Prototy**, 13(3), 222–236. DOI: https://doi.org/10.1080/17452759.2018.1476064.

  • Timothy Wangler, Nicolas Roussel, Freek P. Bos, Theo A. M. Salet, and Robert J. Flatt. (2018). Digital Concrete: A Review. Cement and Concrete Research, 123(17), 105780. Doi: https://doi.org/10.1016/j.cemconres.2019.105780.

  • TotalKustom: 3D‐Printed Hotel. (2015). [Online]. Available at: http://www.totalkustom.com/ 3d‐printed‐hotel‐suite.html. [Accessed on: 24.04.2019].

  • Vantyghem, G., De Corte, W., Shakour, E., and Amir, O. (2019). Topology optimization and 3D printing of a post-tensioned concrete girder, submitted (under review).

    Google Scholar 

  • Van Der Putten, J., De Schutter, G., and Van Tittelboom, K. (2019). The Effect of Print Parameters on the (Micro) structure of 3D Printed Cementitious Materials. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr.—Digit. Concr. 2018, Springer International Publishing, pp. 234–244.

    Google Scholar 

  • Wolfs, R., Bos, F., and Salet, T. (2018). Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cement and Concrete Research, 106, 103–116. https://doi.org/10.1016/j.cemconres.2018.02.001.

  • Wolfs, R., Bos, F., and Salet, T. (2019). Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research, 119. https://doi.org/10.1016/j.cemconres.2019.02.017.

  • Zhou, X., and Li, Z. (2005). Characterization of rheology of fresh fiber reinforced cementitious composites through ram extrusion. Materials and Structures, 38, 17–24.

    Google Scholar 

  • Zhan, Y., and Meschke, G. (2016). Multilevel computational model for failure analysis of steel-fibre–reinforced concrete structures. J. Eng. Mech. ASCE, 142(11), 1–14.

    Google Scholar 

  • Zareiyan, B., and Khoshnevish, B. (2017). Interlayer adhesion and strength of structures in Contour Crafting—Effects of aggregate size, extrusion rate, and layer thickness. Automation in Construction, 81, 112–121.

    Google Scholar 

  • Zahabizadeh, B., Cunha, V. M. C. F., Pereira, J., and Gonçalves, C (2019). The effect of loading direction on the compressive behaviour of a 3D printed cement-based material. In IABSE Symposium, Guimaraes 2019: Towards a Resilient Built Environment Risk and Asset Management, pp. 1658–1665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Asprone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asprone, D. et al. (2022). Structural Design and Testing of Digitally Manufactured Concrete Structures. In: Roussel, N., Lowke, D. (eds) Digital Fabrication with Cement-Based Materials. RILEM State-of-the-Art Reports, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-90535-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90535-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90534-7

  • Online ISBN: 978-3-030-90535-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation