Multi-scale Hybrid Transformer Networks: Application to Prostate Disease Classification

  • Conference paper
  • First Online:
Multimodal Learning for Clinical Decision Support (ML-CDS 2021)

Abstract

Automated disease classification could significantly improve the accuracy of prostate cancer diagnosis on MRI, which is a difficult task even for trained experts. Convolutional neural networks (CNNs) have shown some promising results for disease classification on multi-parametric MRI. However, CNNs struggle to extract robust global features about the anatomy which may provide important contextual information for further improving classification accuracy. Here, we propose a novel multi-scale hybrid CNN/transformer architecture with the ability of better contextualising local features at different scales. In our application, we found this to significantly improve performance compared to using CNNs. Classification accuracy is even further improved with a stacked ensemble yielding promising results for binary classification of prostate lesions into clinically significant or non-significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6. IEEE (2017)

    Google Scholar 

  2. Aldoj, N., Lukas, S., Dewey, M., Penzkofer, T.: Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3d convolutional neural network. Eur. Radiol. 30(2), 1243–1253 (2020)

    Article  Google Scholar 

  3. Arshad, M.A., et al.: Discovery of pre-therapy 2-deoxy-2-18 f-fluoro-d-glucose positron emission tomography-based radiomics classifiers of survival outcome in non-small-cell lung cancer patients. Eur. J. Nucl. Med. Mol. Imaging 46(2), 455–466 (2019)

    Article  Google Scholar 

  4. Bass, E., et al.: A systematic review and meta-analysis of the diagnostic accuracy of biparametric prostate MRI for prostate cancer in men at risk. Prostate Cancer and Prostatic Diseases, pp. 1–16 (2020)

    Google Scholar 

  5. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Cohen, I., Huang, Y., Chen, J., Benesty, J. (eds.) Noise Reduction in Speech Processing, pp. 1–4. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00296-0

    Chapter  Google Scholar 

  6. Brizmohun Appayya, M., et al.: National implementation of multi-parametric magnetic resonance imaging for prostate cancer detection-recommendations from a UK consensus meeting. BJU Int. 122(1), 13–25 (2018)

    Article  Google Scholar 

  7. Castillo, T., et al.: Automated classification of significant prostate cancer on MRI: a systematic review on the performance of machine learning applications. Cancers 12(6), 1606 (2020)

    Google Scholar 

  8. Cordonnier, J.B., Loukas, A., Jaggi, M.: On the relationship between self-attention and convolutional layers. ar**v preprint ar**v:1911.03584 (2019)

  9. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. ar**v preprint ar**v:2010.11929 (2020)

  10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  11. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). ar**v preprint ar**v:1606.08415 (2016)

  12. Ishioka, J., et al.: Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm. BJU Int. 122(3), 411–417 (2018)

    Article  Google Scholar 

  13. Khalvati, F., Wong, A., Haider, M.A.: Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med. Imaging 15(1), 1–14 (2015)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  15. Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman, H.: Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging 33(5), 1083–1092 (2014)

    Article  Google Scholar 

  16. Rizzo, S., et al.: Radiomics: the facts and the challenges of image analysis. Eur. Radiol. Exp. 2(1), 1–8 (2018). https://doi.org/10.1186/s41747-018-0068-z

    Article  Google Scholar 

  17. Song, Y., et al.: Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI. J. Magn. Reson. Imaging 48(6), 1570–1577 (2018)

    Article  Google Scholar 

  18. St, L., Wold, S., et al.: Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 6(4), 259–272 (1989)

    Article  Google Scholar 

  19. Stoyanova, R., et al.: Prostate cancer radiomics and the promise of radiogenomics. Transl. Cancer Res. 5(4), 432 (2016)

    Article  Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. ar**v preprint ar**v:1706.03762 (2017)

  21. Wang, Z., Liu, C., Cheng, D., Wang, L., Yang, X., Cheng, K.T.: Automated detection of clinically significant prostate cancer in MP-MRI images based on an end-to-end deep neural network. IEEE Trans. Med. Imaging 37(5), 1127–1139 (2018)

    Article  Google Scholar 

  22. **e, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  23. Yang, X., et al.: Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Med. Image Anal. 42, 212–227 (2017)

    Article  Google Scholar 

  24. Yushkevich, P.A., Gao, Y., Gerig, G.: ITK-snap: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3342–3345. IEEE (2016)

    Google Scholar 

Download references

Acknowledgments

This work was supported and funded by Cancer Research UK (CRUK) (C309/A28804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainkaran Santhirasekaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santhirasekaram, A., Pinto, K., Winkler, M., Aboagye, E., Glocker, B., Rockall, A. (2021). Multi-scale Hybrid Transformer Networks: Application to Prostate Disease Classification. In: Syeda-Mahmood, T., et al. Multimodal Learning for Clinical Decision Support. ML-CDS 2021. Lecture Notes in Computer Science(), vol 13050. Springer, Cham. https://doi.org/10.1007/978-3-030-89847-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89847-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89846-5

  • Online ISBN: 978-3-030-89847-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation