Cold Atom Computation: From Many-Body Localisation to the Higgs Mode

  • Chapter
  • First Online:
Analogue Quantum Simulation

Abstract

A powerful and highly flexible platform for analogue quantum simulation is a lattice of cold atoms which can be created in the lab via laser beams and spatially varying magnetic fields. The experimental implementation of the cold atom simulator is such that the system can be tuned to mimic condensed matter phenomena such as many-body localisation and the Higgs mode. Detailed analysis of these case studies shows them to exemplify the notion of analogue quantum computation. That is, the type of analogue quantum simulation in which source phenomena is being appealed to for the specific purpose of gaining understanding of formal properties of a target simulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 53.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 69.54
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although for our purpose, the specific experiments at focus aren’t considered to be representing an actual concrete system.

  2. 2.

    See Bruder et al. (2005) for a review.

  3. 3.

    There is a wealth of philosophical discussion of questions relating to the emergence of novel behaviours in the thermodynamic limit, usually with a focus on classical statistical mechanics rather than quantum mechanics; see, for example, (Batterman, 2002; Mainwood, 2006; Butterfield, 2011; Saatsi and Reutlinger, 2018; Palacios, 2018, 2019). Oddly, philosophers seem, as of yet, not to have focused much on the question of the emergence of time asymmetry in thermodynamics from quantum statistical mechanics. For philosophical discussion of the status of the arrow of time in thermodynamics see (Brown and Uffink 2001; Callender, 2016). For discussion of the time reversal invariance of quantum theory see (Roberts, 2017, 2019). For fascinating recent work on time’s arrow and initial quantum states see (Chen, 2020).

References

  • Abanin, D. A., Altman, E., Bloch, I., & Serbyn, M. (2019). Colloquium: Many-body localization, thermalization, and entanglement. Reviews of Modern Physics, 91(2), 021001.

    Google Scholar 

  • Altman, E., & Auerbach, A. (2002). Oscillating Superfluidity of Bosons in Optical Lattices. Physical Review Letter, 89(25).

    Google Scholar 

  • Anderson, P. W. (1958). Absence of diffusion in certain random lattices. Physical Review, 109(5), 1492–1505.

    Google Scholar 

  • Bakr, W. S., Peng, A., Tai, M. E., Ma, R., Simon, J., Gillen, J. I., et al. (2010). Probing the superfluid-to-mott insulator transition at the single-atom level. Science, 329(5991), 547–550.

    Article  Google Scholar 

  • Bardarson, J. H., Pollmann, F., & Moore, J. E. (2012). Unbounded growth of entanglement in models of many-body localization. Physical Review Letter,109(1), 017202. ar**v: 1202.5532.

  • Batterman, R. W. (2002). The devil in the details: Asymptotic reasoning in explanation, reduction, and emergence. Oxford: Oxford University Press.

    Google Scholar 

  • Bauer, B., & Nayak, C. (2013). Area laws in a many-body localized state and its implications for topological order. Journal of Statistical Mechanics,2013(09), P09005.

    Google Scholar 

  • Bloch, I., Dalibard, J., & Zwerger, W. (2008). Many-body physics with ultracold gases. Reviews of Modern Physics,80, 885–964.

    Google Scholar 

  • Bloch, I., Dalibard, J., & Nascimbène, S. (2012). Quantum simulations with ultracold quantum gases. Nature Physics, 8(4), 267–276.

    Article  Google Scholar 

  • Bordia, P., Lüschen, H., Scherg, S., Gopalakrishnan, S., Knap, M., Schneider, U. et al. (2017). Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems. Physical Review X, 7(4), 041047.

    Google Scholar 

  • Braun, S., Friesdorf, M., Hodgman, J. S., Schreiber, M., Ronzheimer, J. P., Riera, A., et al. (2015). Emergence of coherence and the dynamics of quantum phase transitions. PNAS, 112(12), 3641–3646.

    Article  Google Scholar 

  • Brown, H. R., & Uffink, J. (2001). The origins of time-asymmetry in thermodynamics: The minus first law. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 32(4), 525–538.

    Article  Google Scholar 

  • Bruder, C., Fazio, R., Kampf, A., Otterlo, A. V. & Schön G. (1992). Quantum phase transitions and commensurability in frustrated josephson junction arrays. Physica Scripta,T42, 159–170.

    Google Scholar 

  • Bruder, C., Fazio, R., & Schön, G. (2005). The bose-hubbard model: from josephson junction arrays to optical lattices. Annalen der Physik, 14(9), 566–577.

    Article  Google Scholar 

  • Butterfield, J. (2011). Less is different: Emergence and reduction reconciled. Foundations of Physics, 41(6), 1065–1135.

    Article  Google Scholar 

  • Callender, C. (2016). Thermodynamic asymmetry in time. In Zalta, E. N. (Ed.) The stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University.

    Google Scholar 

  • Chen, E. K. (2020). Quantum mechanics in a time-asymmetric universe: On the nature of the initial quantum state. The British Journal for the Philosophy of Science.

    Google Scholar 

  • Choi, J.-Y., Hild, S., Zeiher, J., Schauß, P., Rubio-Abadal, A., Yefsah, T., et al. (2016). Exploring the many-body localization transition in two dimensions. Science, 352(6293), 1547–1552.

    Article  Google Scholar 

  • De Roeck, W., & Huveneers, F. (2017). Stability and instability towards delocalization in MBL systems. Physical Review B, 95(15), 155129. ar**v: 1608.01815.

  • Endres, M., Fukuhara, T., Pekker, D., Cheneau, M., Schauß, P., Gross, C., et al. (2012). The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature, 487(7408), 454–458.

    Article  Google Scholar 

  • Finotello, D., Gillis, K. A., Wong, A., & Chan, M. H. W. (1988). Sharp heat-capacity signature at the superfluid transition of helium films in porous glasses. Physical Review Letters,61(17), 1954–1957.

    Google Scholar 

  • Fölling, S., Trotzky, S., Cheinet, P., Feld, M., Saers, R., Widera, A., et al. (2007). Direct observation of second-order atom tunnelling. Nature, 448(7157), 1029–1032.

    Article  Google Scholar 

  • Friesdorf, M., Werner, A., Brown, W., Scholz, V., & Eisert, J. (2015). Many-body localization implies that eigenvectors are matrix-product states. Physical Review Letter, 114(17), 170505.

    Google Scholar 

  • Gogolin, C., & Eisert, J. (2016). Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Reports on Progress in Physics, 79(5), 056001. ar**v: 1503.07538.

  • Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W., & Bloch, I. (2002). Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 415(6867), 39–44.

    Google Scholar 

  • Hamann, S. E., Haycock, D. L., Klose, G., Pax, P. H., Deutsch, I. H., Jessen, P. S. (1998). Resolved-sideband raman cooling to the ground state of an optical lattice. Physical Review Letter, 80(19), 4149–4152. Publisher: American Physical Society.

    Google Scholar 

  • Hubbard, J. (1963). Electron correlations in narrow energy bands. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 276(1365), 238–257.

    Google Scholar 

  • Huber, S. D., Altman, E., Büchler, H. P., & Blatter, G. (2007). Dynamical properties of ultracold bosons in an optical lattice. Physical Review B, 75(8).

    Google Scholar 

  • Huber, S. D., Theiler, B., Altman, E., & Blatter, G. (2008). Amplitude mode in the quantum phase model. Physical Review Letter,100(5), 050404.

    Google Scholar 

  • Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W., & Zoller, P. (1998). Cold bosonic atoms in optical lattices. Physical Review Letters, 81, 3108–3111.

    Article  Google Scholar 

  • Köhl, M., Moritz, H., Stöferle, T., Günter, K., & Esslinger, T. (2005). Fermionic atoms in a three dimensional optical lattice: Observing fermi surfaces, dynamics, and interactions. Physical Review Letter,94, 080403.

    Google Scholar 

  • Landig, R., Hruby, L., Dogra, N., Landini, M., Mottl, R., Donner, T., & Esslinger, T. (2016). Quantum phases from competing short- and long-range interactions in an optical lattice. Nature, 532(7600), 476–479.

    Article  Google Scholar 

  • Liu, L., Chen, K., Deng, Y., Endres, M., Pollet, L., Prokof’ev, N. (2015). The Massive Goldstone (Higgs) mode in two-dimensional ultracold atomic lattice systems. Physical Review B, 92(17). ar**v: 1509.06828.

  • Luitz, D. J., Laflorencie, N., & Alet, F. (2015). Many-body localization edge in the random-field Heisenberg chain. Physical Review B,91(8), 081103. ar**v: 1411.0660.

  • Lüschen, H. P., Bordia, P., Scherg, S., Alet, F., Altman, E., Schneider, U. et al. (2017). Observation of Slow Dynamics near the Many-Body Localization Transition in One-Dimensional Quasiperiodic Systems. Physical Review Letter, 119(26), 260401.

    Google Scholar 

  • Mainwood, P. (2006). Phase transitions in finite systems. Ph. D. thesis, University of Oxford. http://philsci-archive.pitt.edu/8339/.

  • Matsunaga, R., Hamada, Y. I., Makise, K., Uzawa, Y., Terai, H., Wang, Z. et al. (2013). Higgs amplitude mode in the BCS superconductors nb\(_{1-x}\)ti\(_x\)n induced by terahertz pulse excitation. Physical Review Letter, 111(5), 057002. Publisher: American Physical Society.

    Google Scholar 

  • Matsunaga, R., Tsuji, N., Fujita, H., Sugioka, A., Makise, K., Uzawa, Y., et al. (2014). Light-induced collective pseudospin precession resonating with higgs mode in a superconductor. Science, 345(6201), 1145–1149.

    Article  Google Scholar 

  • McQueeney, D., Agnolet, G., & Reppy, J. D. (1984). Surface superfluidity in dilute \(^4\)he-\(^3\)he mixtures. Physical Review Letters, 52(15), 1325–1328.

    Article  Google Scholar 

  • Müller, K. A., & Bednorz, J. G. (1987). The discovery of a class of high-temperature superconductors. Science, 237(4819), 1133–1139.

    Article  Google Scholar 

  • Müller-Seydlitz, T., Hartl, M., Brezger, B., Hänsel, H., Keller, C., Schnetz, A. et al. (1997). Atoms in the lowest motional band of a three-dimensional optical lattice. Physical Review Letter, 78(6), 1038–1041. Publisher: American Physical Society.

    Google Scholar 

  • Müller, K. A., Takashige, M., & Bednorz, J. G. (1987). Flux trap** and superconductive glass state in la\(_2\)cuo\(_{4-y}\):ba. Physical Review Letters, 58(11), 1143–1146.

    Article  Google Scholar 

  • Murmann, S., Deuretzbacher, F., Zürn, G., Bjerlin, J., Reimann, S. M., Santos, L. et al. (2015). Antiferromagnetic heisenberg spin chain of a few cold atoms in a one-dimensional trap. Physical Review Letter,115, 215301.

    Google Scholar 

  • Neumann, J., & v. (1929). Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik. Z. Physik,57(1), 30–70.

    Google Scholar 

  • Oganesyan, V., & Huse, D. A. (2007). Localization of interacting fermions at high temperature. Physical Review B, 75(15), 155111. ar**v: cond-mat/0610854.

  • Palacios, P. (2018). Had we but world enough, and time... but we don’t!: Justifying the thermodynamic and infinite-time limits in statistical mechanics. Foundations of Physics, 48(5), 526–541.

    Google Scholar 

  • Palacios, P. (2019). Phase transitions: A challenge for intertheoretic reduction? Philosophy of Science, 86(4), 612–640.

    Article  Google Scholar 

  • Podolsky, D., & Sachdev, S. (2012). Spectral functions of the Higgs mode near two-dimensional quantum critical points. Physical Review B, 86(5).

    Google Scholar 

  • Podolsky, D., Auerbach, A. & Arovas, D. P. (2011). Visibility of the amplitude (Higgs) mode in condensed matter. Physical Review B, 84(17).

    Google Scholar 

  • Pollet, L., & Prokof’ev, N. (2012). Higgs Mode in a Two-Dimensional Superfluid. Physical Review Letter109(1), 010401.

    Google Scholar 

  • Raithel, G., Birkl, G., Kastberg, A., Phillips, W. D., Rolston, S. L. (1997). Cooling and localization dynamics in optical lattices. Physical Review Letter, 78(4), 630–633. Publisher: American Physical Society.

    Google Scholar 

  • Reppy, J. D. (1984). 4he as a dilute bose gas. Physica B+C, 126(1), 335–341.

    Google Scholar 

  • Roberts, B. W. (2019). Time reversal. Prepared for the Routledge Handbook of Philosophy of Physics, Eleanor Knox and Alistair Wilson (Eds).

    Google Scholar 

  • Roberts, B. W. (2017). Three myths about time reversal in quantum theory. Philosophy of Science, 84(2), 315–334.

    Article  Google Scholar 

  • Roushan, P., Neill, C., Tangpanitanon, J., Bastidas, V. M., Megrant, A., Barends, R. et al. (2017). Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science,358(6367), 1175–1179.

    Google Scholar 

  • Saatsi, J., & Reutlinger, A. (2018). Taking reductionism to the limit: How to rebut the antireductionist argument from infinite limits. Philosophy of Science, 85(3), 455–482.

    Article  Google Scholar 

  • Sachdev, S. (1999). Universal relaxational dynamics near two-dimensional quantum critical points. Physical Review B,59(21), 14054.

    Google Scholar 

  • Schollwöck, U. (2014). Advanced statistical physics. LMU Munich: Lecture Notes.

    Google Scholar 

  • Schollwöck, U. (2005). The density-matrix renormalization group. Reviews of Modern Physics, 77, 259–315.

    Article  Google Scholar 

  • Schreiber, M., S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E.et al. (2015). Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science, 349(6250), 842–845.

    Google Scholar 

  • Sherson, J. F., Weitenberg, C., Endres, M., Cheneau, M., Bloch, I., & Kuhr, S. (2010). Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature, 467, 68–72.

    Article  Google Scholar 

  • Smith, J., A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P. Hauke, M. et al. (2016). Many-body localization in a quantum simulator with programmable random disorder. Nature Physics, 12(10), 907–911.

    Google Scholar 

  • Struck, J., Ölschläger, C., Le Targat, R., Soltan-Panahi, P., Eckardt, A., Lewenstein, M., et al. (2011). Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science, 333(6045), 996–999.

    Article  Google Scholar 

  • Šuntajs, J., Bonča, J., Prosen, T., Vidmar, L. (2019). Quantum chaos challenges many-body localization. ar**v: 1905.06345.

  • Trotzky, S., Chen, Y.-A., Flesch, A., McCulloch, I. P., Schollwock, U., Eisert, J., & Bloch, I. (2011). Probing the relaxation towards equilibrium in an isolated strongly correlated 1d bose gas. Nature Physics, 8(7), 325–330.

    Google Scholar 

  • Wang, Y., Shevate, S., Wintermantel, T. M., Morgado, M., Lochead, G., Whitlock, S. (2020). Preparation of hundreds of microscopic atomic ensembles in optical tweezer arrays. npj Quantum Information, 6(1), 1–5.

    Google Scholar 

  • Znidaric, M., Prosen, T., & Prelovsek, P. (2008). Many body localization in Heisenberg XXZ magnet in a random field. Physical Review B,77(6), 064426. ar**v: 0706.2539.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Hangleiter .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hangleiter, D., Carolan, J., Thébault, K.P.Y. (2022). Cold Atom Computation: From Many-Body Localisation to the Higgs Mode. In: Analogue Quantum Simulation. Springer, Cham. https://doi.org/10.1007/978-3-030-87216-8_3

Download citation

Publish with us

Policies and ethics

Navigation