Unsupervised Domain Adaptation for Small Bowel Segmentation Using Disentangled Representation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12903))

Abstract

We present a novel unsupervised domain adaptation method for small bowel segmentation based on feature disentanglement. To make the domain adaptation more controllable, we disentangle intensity and non-intensity features within a unique two-stream auto-encoding architecture, and selectively adapt the non-intensity features that are believed to be more transferable across domains. The segmentation prediction is performed by aggregating the disentangled features. We evaluated our method using intravenous contrast-enhanced abdominal CT scans with and without oral contrast, which are used as source and target domains, respectively. The proposed method showed clear improvements in terms of three different metrics compared to other domain adaptation methods that are without the feature disentanglement. The method brings small bowel segmentation closer to clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Small bowel obstruction (2019). https://my.clevelandclinic.org/health/diseases/15850-small-bowel-obstruction

  2. Berga, D., Masana, M., de Weijer, J.V.: Disentanglement of color and shape representations for continual learning (2020)

    Google Scholar 

  3. Chen, Y., Chen, W., Chen, Y., Tsai, B., Wang, Y.F., Sun, M.: No more discrimination: cross city adaptation of road scene segmenters. In: IEEE International Conference on Computer Vision, pp. 2011–2020 (2017)

    Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012). https://doi.org/10.1016/j.mri.2012.05.001

    Article  Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)

    Google Scholar 

  7. Jiang, J., Veeraraghavan, H.: Unified cross-modality feature disentangler for unsupervised multi-domain MRI abdomen organs segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 347–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_34

    Chapter  Google Scholar 

  8. Ju, Z., et al.: Automatic segmentation of pelvic organs-at-risk using a fusion network model based on limited training samples. Acta Oncol. 59(8), 933–939 (2020). https://doi.org/10.1080/0284186X.2020.1775290

    Article  Google Scholar 

  9. Liu, Y., et al.: CT-based multi-organ segmentation using a 3D self-attention u-net network for pancreatic radiotherapy. Med. Phys. 47(9), 4316–4324 (2020). https://doi.org/10.1002/mp.14386

    Article  Google Scholar 

  10. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)

    Google Scholar 

  11. Murphy, K.P., McLaughlin, P.D., O’Connor, O.J., Maher, M.M.: Imaging the small bowel. Curr. Opin. Gastroenterol. 30(2), 134–140 (2014)

    Article  Google Scholar 

  12. Oda, H., et al.: Visualizing intestines for diagnostic assistance of ileus based on intestinal region segmentation from 3D CT images. ar**v preprint ar**v:2003.01290 (2020)

  13. Sartor, H., et al.: Auto-segmentations by convolutional neural network in cervical and anorectal cancer with clinical structure sets as the ground truth. Clin. Transl. Radiat. Oncol. 25, 37–45 (2020). https://doi.org/10.1016/j.ctro.2020.09.004

    Article  Google Scholar 

  14. Shin, S.Y., Lee, S., Elton, D., Gulley, J.L., Summers, R.M.: Deep small bowel segmentation with cylindrical topological constraints. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 207–215. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_21

    Chapter  Google Scholar 

  15. Shu, Z., Sahasrabudhe, M., Alp Güler, R., Samaras, D., Paragios, N., Kokkinos, I.: Deforming autoencoders: unsupervised disentangling of shape and appearance. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 664–680. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_40

    Chapter  Google Scholar 

  16. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  17. Tsai, Y., Hung, W., Schulter, S., Sohn, K., Yang, M., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  18. Wang, S., Yu, L., Li, K., Yang, X., Fu, C.-W., Heng, P.-A.: Boundary and entropy-driven adversarial learning for fundus image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 102–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_12

    Chapter  Google Scholar 

  19. Wu, Y., He, K.: Group normalization. ar**v preprint ar**v:1803.08494 (2018)

  20. Yang, J., Dvornek, N.C., Zhang, F., Chapiro, J., Lin, M.D., Duncan, J.S.: Unsupervised domain adaptation via disentangled representations: application to cross-modality liver segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 255–263. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_29

    Chapter  Google Scholar 

  21. Zhang, W., et al.: Mesenteric vasculature-guided small bowel segmentation on 3-D CT. IEEE Trans. Med. Imaging 32(11), 2006–2021 (2013). https://doi.org/10.1109/TMI.2013.2271487

    Article  Google Scholar 

  22. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision, pp. 2242–2251 (2017)

    Google Scholar 

Download references

Acknowledgments

We thank Dr. James Gulley for patient referral and for providing access to CT scans. This research was supported by the National Institutes of Health, Clinical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Yeon Shin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2837 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shin, S.Y., Lee, S., Summers, R.M. (2021). Unsupervised Domain Adaptation for Small Bowel Segmentation Using Disentangled Representation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation