Gerrymandering on Graphs: Computational Complexity and Parameterized Algorithms

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12885))

Included in the following conference series:

Abstract

This paper studies gerrymandering on graphs from a computational viewpoint (introduced by Cohen-Zemach et al. [AAMAS 2018] and continued by Ito et al. [AAMAS 2019]). Our contributions are two-fold: conceptual and computational. We propose a generalization of the model studied by Ito et al., where the input consists of a graph on n vertices representing the set of voters, a set of m candidates \(\mathcal {C}\), a weight function \(w_v: \mathcal {C}\rightarrow {\mathbb Z}^+\) for each voter \(v\in V(G)\) representing the preference of the voter over the candidates, a distinguished candidate \(p\in \mathcal {C}\), and a positive integer k. The objective is to decide if it is possible to partition the vertex set into k districts (i.e., pairwise disjoint connected sets) such that the candidate p wins more districts than any other candidate. There are several natural parameters associated with the problem: the number of districts (k), the number of voters (n), and the number of candidates (m). The problem is known to be NP-complete even if \(k=2\), \(m=2\), and G is either a complete bipartite graph (in fact \(K_{2,n}\), i.e., partitions of size 2 and n) or a complete graph. Moreover, recently we and Bentert et al. [WG 2021], independently, showed that the problem is NP-hard for paths. This means that the search for FPT algorithms needs to focus either on the parameter n, or subclasses of forest (as the problem is NP-complete on \(K_{2,n}\), a family of graphs that can be transformed into a forest by deleting one vertex). Circumventing these intractability results we successfully obtain the following algorithmic results.

  • A \(2^n (n+m)^{\mathcal {O}(1)}\) time algorithm on general graphs.

  • FPT algorithm with respect to k (an algorithm with running time \(2^{{\mathcal O}(k)}n^{{\mathcal O}(1)}\)) on paths in both deterministic and randomized settings, even for arbitrary weight functions. Whether the problem is FPT parameterized by k on trees remains an interesting open problem.

Our algorithmic results use sophisticated technical tools such as representative set family and Fast Fourier Transform based polynomial multiplication, and their (possibly first) application to problems arising in social choice theory and/or algorithmic game theory is likely of independent interest to the community.

Sushmita Gupta supported by SERB-Starting Research Grant (SRG/2019/001870). Fahad Panolan supported by Seed grant, IIT Hyderabad (SG/IITH/F224/2020-21/SG-79). Sanjukta Roy supported by the WWTF research grant (VRG18-012). Saket Saurabh supported by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 819416), and Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We may assume this by applying the tie-breaking rule.

References

  1. Bentert, M., Koana, T., Niedermeier, R.: The complexity of gerrymandering over graphs: paths and trees. ar**v preprint ar**v:2102.08905 (2021)

  2. Betzler, N., Guo, J., Niedermeier, R.: Parameterized computational complexity of Dodgson and Young elections. Inf. Comput. 208(2), 165–177 (2010)

    Article  MathSciNet  Google Scholar 

  3. Betzler, N., Uhlmann, J.: Parameterized complexity of candidate control in elections and related digraph problems. Theor. Comput. Sci. 410(52), 5425–5442 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bevern, R.V., Bredereck, R., Chen, J., Froese, V., Niedermeier, R., Woeginger, G.J.: Network-based vertex dissolution. SIDMA 29(2), 888–914 (2015)

    Article  MathSciNet  Google Scholar 

  5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings. J. Comput. Syst. Sci. 87, 119–139 (2017)

    Article  MathSciNet  Google Scholar 

  6. Brubach, B., Srinivasan, A., Zhao, S.: Meddling metrics: the effects of measuring and constraining partisan gerrymandering on voter incentives. In: Proceedings of EC 2020, pp. 815–833 (2020)

    Google Scholar 

  7. Clough, E.: Talking locally and voting globally: Duverger’s law and homogeneous discussion networks. Political Res. Q. 3(60), 531–540 (2007)

    Article  Google Scholar 

  8. Cohen-Zemach, A., Lewenberg, Y., Rosenschein, J.S.: Gerrymandering over graphs. In: Proceedings of AAMAS 2018, pp. 274–282 (2018)

    Google Scholar 

  9. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  10. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theor. Comput. Sci. 411(40–42), 3701–3713 (2010)

    Article  MathSciNet  Google Scholar 

  11. Dey, P.: Gerrymandering: a briber’s perspective. ar**v:1909.01583 (2019)

  12. Dey, P., Misra, N., Narahari, Y.: Parameterized dichotomy of choosing committees based on approval votes in the presence of outliers. Theor. Comput. Sci. 783, 53–70 (2019)

    Article  MathSciNet  Google Scholar 

  13. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science, Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  15. Eiben, E., Fomin, F.V., Panolan, F., Simonov, K.: Manipulating districts to win elections: fine-grained complexity. In: Proceedings of AAAI 2020 (2020)

    Google Scholar 

  16. Ellenberg, J.: How computers turned gerrymandering into a science. New York Times, October 2017

    Google Scholar 

  17. Erikson, R.S.: Malapportionment, gerrymandering, and party fortunes in congressional elections. Am. Political Sci. Rev. 4(66), 1234–1245 (1972)

    Article  Google Scholar 

  18. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Copeland voting fully resists constructive control. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 165–176. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68880-8_17

    Chapter  Google Scholar 

  19. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Llull and Copeland voting computationally resist bribery and constructive control. JAIR 35, 275–341 (2009)

    Article  MathSciNet  Google Scholar 

  20. Fleiner, B., Nagy, B., Tasnádi, A.: Optimal partisan districting on planar geographies. Cent. Eur. J. Oper. Res. 25(4), 879–888 (2017)

    Article  MathSciNet  Google Scholar 

  21. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 1–60 (2016)

    Article  MathSciNet  Google Scholar 

  22. Gupta, S., Jain, P., Panolan, F., Roy, S., Saurabh, S.: Gerrymandering on graphs: computational complexity and parameterized algorithms. ar**v preprint ar**v:2102.09889 (2021)

  23. Issacharoff, S.: Gerrymandering and political cartels. Harvard Law Rev. 116, 593–648 (2002)

    Article  Google Scholar 

  24. Ito, T., Kamiyama, N., Kobayashi, Y., Okamoto, Y.: Algorithms for gerrymandering over graphs. In: Proceedings of AAMAS 2019 (2019)

    Google Scholar 

  25. **a, L., Zuckerman, M., Procaccia, A.D., Conitzer, V., Rosenschein, J.S.: Complexity of unweighted coalitional manipulation under some common voting rules. In: Proceedings of IJCAI 2019 (2009)

    Google Scholar 

  26. Lewenberg, Y., Lev, O., Rosenschein, J.S.: Divide and conquer: using geographic manipulation to win district-based elections. In: Proceedings of AAMAS 2017 (2017)

    Google Scholar 

  27. Moenck, R.T.: Practical fast polynomial multiplication. In: Proceedings of SYMSAC 1976, pp. 136–148 (1976)

    Google Scholar 

  28. Monien, B.: How to find long paths efficiently. In: North-Holland Mathematics Studies, vol. 109, pp. 239–254. Elsevier (1985)

    Google Scholar 

  29. Neidermeier, R.: Invitation to Fixed-Parameter Algorithms. Springer (2006)

    Google Scholar 

  30. Puppe, C., Tasnádi, A.: Optimal redistricting under geographical constraints: why “pack and crack’’ does not work. Econ. Lett. 105(1), 93–96 (2009)

    Article  MathSciNet  Google Scholar 

  31. Talmon, N.: Structured proportional representation. Theor. Comput. Sci. 708, 58–74 (2018)

    Article  MathSciNet  Google Scholar 

  32. Williams, R.: Finding paths of length \(k\) in \({O}^\star (2^k)\) time. Inf. Process. Lett. 109(6), 315–318 (2009)

    Article  Google Scholar 

  33. Wines, M.: What is gerrymandering? And how does it work? New York Times, June 2019

    Google Scholar 

  34. Zuckerman, M., Procaccia, A.D., Rosenschein, J.S.: Algorithms for the coalitional manipulation problem. JAIR 173(2), 392–412 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjukta Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, S., Jain, P., Panolan, F., Roy, S., Saurabh, S. (2021). Gerrymandering on Graphs: Computational Complexity and Parameterized Algorithms. In: Caragiannis, I., Hansen, K.A. (eds) Algorithmic Game Theory. SAGT 2021. Lecture Notes in Computer Science(), vol 12885. Springer, Cham. https://doi.org/10.1007/978-3-030-85947-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85947-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85946-6

  • Online ISBN: 978-3-030-85947-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation