HOMC: A Hierarchical Clustering Algorithm Based on Optimal Low Rank Matrix Completion for Single Cell Analysis

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12838))

Included in the following conference series:

  • 1494 Accesses

Abstract

The tremendous development of single-cell RNA sequencing (scRNA-seq) technology offers the promise of addressing cellular heterogeneity problem which cannot be addressed with bulk sequencing technologies. However, scRNA-seq data is noisy and sparse due to the dropout events. In this study, we focused on cellular heterogeneity problem and proposed a hierarchical clustering algorithm based on optimal low rank matrix completion (HOMC). We first applied nonnegative matrix factorization for determining optimal low rank approximation for the original scRNA-seq data. Then we performed hierarchical clustering based on correlation-based distance for grou** those imputed data points, and optimal number of clusters can be determined by integrating three classical measures. Experimental results have showed that HOMC is capable of distinguishing cellular differences and the clustering performance is superior to other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kalisky, T., Quake, S.R.: Single-cell genomics. Nat. Methods 8(4), 311–314 (2011)

    Article  Google Scholar 

  2. Pelkmans, L.: Using cell-to-cell variability – a new era in molecular biology. Science 336(6080), 425–426 (2012)

    Article  Google Scholar 

  3. Patel, A.P., Tirosh, I., Trombetta, J.J., et al.: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190), 1396–1401 (2014)

    Article  Google Scholar 

  4. Tirosh, I., et al.: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell rna-seq. Science 352(6282), 189–196 (2016)

    Article  Google Scholar 

  5. Wagner, A., Regev, A., Yosef, N.: Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34(11), 1145–1160 (2016)

    Article  Google Scholar 

  6. Trapnell, C.: Defining cell types and states with single-cell genomics. Genome Res. 25(10), 1491–1498 (2015)

    Article  Google Scholar 

  7. Biase, F.H., Cao, X., Zhong, S.: Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell rna sequencing. Genome Res. 24(11), 1787–1796 (2014)

    Article  Google Scholar 

  8. Trapnell, C., et al.: Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions. Nat. Biotechnol. 32(4), 381 (2014)

    Article  Google Scholar 

  9. AlJanahi, A.A., Danielsen, M., Dunbar, C.E.: An introduction to the analysis of single-cell rna-sequencing data. Mol. Therapy-Methods Clin. Dev. 10, 189–196 (2018)

    Article  Google Scholar 

  10. Kharchenko, P.V., Silberstein, L., Scadden, D.T.: Bayesian approach to single-cell differential expression analysis. Nat. Methods 11(7), 740–742 (2014)

    Article  Google Scholar 

  11. Tracy, S., Yuan, G.-C., Dries, R.: Rescue: imputing dropout events in single-cell rna-sequencing data. BMC Bioinform. 20(1), 388 (2019)

    Article  Google Scholar 

  12. Hou, W., Ji, Z., Ji, H., Hicks, S.C.: A systematic evaluation of single-cell rna-sequencing imputation methods, bioRxiv (2020)

    Google Scholar 

  13. Li, W.V., Li, J.J.: An accurate and robust imputation method scimpute for single-cell rna-seq data. Nat. Commun. 9(1), 1–9 (2018)

    Article  Google Scholar 

  14. Chen, M., Zhou, X.: Viper: variability-preserving imputation for accurate gene expression recovery in single-cell rna sequencing studies. Genome Biol. 19(1), 1–15 (2018)

    Article  Google Scholar 

  15. Gong, W., Kwak, I.-Y., Pota, P., Koyano-Nakagawa, N., Garry, D.J.: Drimpute: imputing dropout events in single cell rna sequencing data. BMC Bioinform. 19(1), 1–10 (2018)

    Article  Google Scholar 

  16. Van Dijk, D., et al.: Recovering gene interactions from single-cell data using data diffusion. Cell 174(3), 716–729 (2018)

    Article  Google Scholar 

  17. Talwar, D., Mongia, A., Sengupta, D., Majumdar, A.: Autoimpute: Autoencoder based imputation of single-cell rna-seq data. Sci. Rep. 8(1), 1–11 (2018)

    Article  Google Scholar 

  18. Mongia, A., Sengupta, D., Majumdar, A.: Mcimpute: Matrix completion based imputation for single cell rna-seq data. Front. Genet. 10, 9 (2019)

    Article  Google Scholar 

  19. Zhu, K., Anastassiou, D.: 2dimpute: imputation in single-cell rna-seq data from correlations in two dimensions. Bioinformatics 36(11), 3588–3589 (2020)

    Article  Google Scholar 

  20. Gunady, M.K., Kancherla, J., Bravo, H.C., Feizi, S.: scgain: Single cell rna-seq data imputation using generative adversarialnetworks, bioRxiv, p. 837302 (2019)

    Google Scholar 

  21. Hartigan, J.A., Wong, M.A.: Algorithm as 136: A k-means clustering algorithm. Appl. Stat. 28(1), 100–108 (1979)

    Article  Google Scholar 

  22. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inform. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  23. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

    Google Scholar 

  24. Shao, C., Hofer, T.: Robust classification of single-cell transcriptome data by nonnegative matrix factorization. Bioinformatics 33(2), 235–242 (2017)

    Article  Google Scholar 

  25. Lv, D., et al.: Systematic characterization of lncrnas’ cell-to-cell expression heterogeneity in glioblastoma cells. Oncotarget 7(14), 18403 (2016)

    Article  Google Scholar 

  26. Kim, D.H., et al.: Single-cell transcriptome analysis reveals dynamic changes in lncrna expression during reprogramming. Cell Stem Cell 16(1), 88–101 (2015)

    Article  Google Scholar 

  27. Camp, J.G., et al.: Multilineage communication regulates human liver bud development from pluripotency. Nature 546(7659), 533–538 (2017)

    Article  Google Scholar 

  28. Peng, T., Nie, Q.: Somsc: self-organization-map for high dimensional single-cell data of cellular states and their transitions, bioRxiv, p. 124693 (2017)

    Google Scholar 

  29. Kiselev, V.Y., et al.: Sc3: consensus clustering of single-cell rna-seq data. Nat. Methods 14(5), 483–486 (2017)

    Article  MathSciNet  Google Scholar 

  30. Sun, Y., Babu, P., Palomar, D.P.: Majorization minimization algorithms in signal processing, communications, and machine learning. IEEE Trans. Signal Process. 65(3), 794–816 (2017)

    Article  MathSciNet  Google Scholar 

  31. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3(1), 1–27 (1974)

    MathSciNet  MATH  Google Scholar 

  32. Davies, D.L., Bouldin, D.W.: A Cluster Separation Measure. IEEE Computer Society (1979)

    Google Scholar 

  33. Peter, R.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1999)

    MATH  Google Scholar 

  34. Lin, P., Troup, M., Ho, J.W.: Cidr: ultrafast and accurate clustering through imputation for single-cell rna-seq data. Genome Biol. 18(1), 59 (2017)

    Article  Google Scholar 

  35. Xu, C., Su, Z.: Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31(12), 1974–1980 (2015)

    Article  Google Scholar 

  36. Kiselev, V.Y., Kirschner, K., Schaub, M.T., et al.: SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14(5), 483–486 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Grant nos: 11801434, 11901575, 91730301, 62002234), China Postdoctoral Science Foundation (Grant no: 3115200128), Guangdong Basic and Applied Basic Research Foundation (Grant no: 2019A1515111180). The authors would like to thank the anonymous reviewers for helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Jiang or Yushan Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, X., Yan, C., Jiang, H., Qiu, Y. (2021). HOMC: A Hierarchical Clustering Algorithm Based on Optimal Low Rank Matrix Completion for Single Cell Analysis. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84532-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84531-5

  • Online ISBN: 978-3-030-84532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation