Abstract

Earth is an ancient construction material that is attracting numerous scientific investigations due to the sustainable characteristics of this material and the significant heritage of existing earth constructions. Several studies have recently been conducted to investigate the seismic performance of earth buildings. This chapter presents the state of the art related to the seismic performance of earth structures. Since the seismic performance of a structure depends both on the dynamic and static characteristics of the material and the structure, the chapter starts with a summary of the static characteristics, followed by the results on the dynamic characteristics. Then the existing methods for the earthquake performance evaluation are presented. Finally, the techniques of seismic strengthening are cited and discussed. This chapter is a useful repertoire for further studies on the seismic design of earthen structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aktaş YD, Akyüz U, Türer A et al (2014) Seismic resistance evaluation of traditional Ottoman timber-frame Hımış houses: frame loadings and material tests. Earthq Spectra 30(4):1711–1732

    Article  Google Scholar 

  2. Al Aqtash U, Bandini P, Cooper SL (2017) Numerical approach to model the effect of moisture in adobe masonry walls subjected to in-plane loading. Int J Archit Herit 11(6):805–815

    Article  Google Scholar 

  3. Ali Q, Schacher T, Ashraf M et al (2012) In-plane behavior of the Dhajji-Dewari structural system (wooden braced frame with masonry infill). Earthq Spectra 28(3):835–858

    Article  Google Scholar 

  4. Allahvirdizadeh R, Oliveira DV, Silva RA (2019) Numerical modeling of the seismic out-of-plane response of a plain and TRM-strengthened rammed earth subassembly. Eng Struct 193:43–56

    Article  Google Scholar 

  5. Araki H, Koseki J, Sato T (2011) Mechanical Properties of geomaterials used for constructing earthen walls in Japan. Bull ERS Inst Ind Sci Univ Tokyo 44:101–111

    Google Scholar 

  6. Araki H, Koseki J, Sato T (2016) Tensile strength of compacted rammed earth materials. Soils Found 56(2):189–204

    Article  Google Scholar 

  7. Arrigoni A, Beckett C, Ciancio D, Dotelli G (2017) Life cycle analysis of environmental impact vs. durability of stabilised rammed earth. Constr Build Mater 142:128–136

    Article  Google Scholar 

  8. Aubert JE, Fabbri A, Morel JC, Maillard P (2013) An earth block with a compressive strength higher than 45 MPa! Constr Build Mater 47:366–369

    Article  Google Scholar 

  9. Azeredo G, Morel JC, Barbosa NP (2007) Compressive strength of earth mortars. J Urban Environ Eng 1(1):26–35

    Article  Google Scholar 

  10. Azevedo J, Sincraian G (2000) Modelling the seismic behaviour of monumental masonry structures. In: Proceedings of the Archii, vol 59, p 60

    Google Scholar 

  11. Baglioni E, Fratini F, Rovero L (2010) The materials utilised in the earthen buildings sited in the Drâa Valley (Morocco): mineralogical and mechanical characteristics. In: Proceedings of 6th seminar of earthen architecture in Portugal and 9th Ibero-American seminar on earthen architecture and construction, Center for Archaeological Studies at the Universities of Coimbra and Porto, Coimbra, Portugal

    Google Scholar 

  12. Bakeer T, Jäger W (2007) Collapse analysis of reinforced and unreinforced adobe masonry structures under earthquake actions–case study: Bam Citadel. In: 10th international conference, structural studies repairs and maintenance of heritage architecture. WIT transactions on the built environment, vol 95, pp 577–586

    Google Scholar 

  13. Barros RS, Costa A, Varum H, Rodrigues H, Lourenço PB, Vasconcelos G (2015) Seismic behaviour analysis and retrofitting of a row building. Seismic retrofitting: learning from vernacular architecture, pp 213–218

    Google Scholar 

  14. Bernat-Maso E, Gil L, Escrig C (2016) Textile-reinforced rammed earth: Experimental characterisation of flexural strength and thoughness. Constr Build Mater 106:470–479

    Article  Google Scholar 

  15. Bhattacharya S, Nayak S, Dutta S (2014) A critical review of retrofitting methods for unreinforced masonry structures. Int J Disaster Risk Reduct 7:51–67

    Article  Google Scholar 

  16. Blondet M, Torrealva D, Villa García G, Ginocchio F, Madueño I (2005) Using industrial materials for the construction of safe adobe houses in seismic areas. In: Proceedings of EarthBuild2005: international earth building conference, Faculty of Design, Architecture and Building, University of Technology Sydney, Australia

    Google Scholar 

  17. Blondet M (2008) Behavior of earthen buildings during the Pisco Earthquake of August 15, 2007. Earthquake Engineering Research Institute, Oakland

    Google Scholar 

  18. Blondet M, Torrealva D, Vargas J, Velasquez J, Tarque N (2006) Seismic reinforcement of adobe houses using external polymer mesh. In: First European conference on earthquake engineering and seismology, Swiss Society for Earthquake Engineering and Structural Dynamics, Geneva, Switzerland

    Google Scholar 

  19. Blondet M, Villa Garcia G, Brzev S, Rubiños A (2011) Earthquake-resistant construction of adobe buildings: a tutorial, 2nd edn. Earthquake Engineering Research Institute, Oakland

    Google Scholar 

  20. Blondet M, Vargas J, Tarque N, Iwaki C (2011) Construcción sismorresistente en tierra: la gran experiencia contemporánea de la Pontificia Universidad Católica del Perú. Inf Constr 63(523):41–50

    Article  Google Scholar 

  21. Blondet M, Vargas J, Tarque N, Soto J, Sosa C, Sarmiento J (2015) Refuerzo sísmico de mallas de sogas sintéticas para construcciones de adobe. In: Proceedings of 15th SIACOT: Ibero-American seminar on earthen architecture and construction, Faculty of Architecture and Urbanism of the University of Cuenca, Cuenca, Ecuador

    Google Scholar 

  22. Bove A, Misseri G, Rovero L, Tonietti U (2016) Experimental and numerical analyses on the antiseismic effectiveness of fiber textile for earthen buildings. J Mater Environ Sci 7(10):3548–3557

    Google Scholar 

  23. Bui QB, Morel JC, Reddy BVV, Ghayad W (2009) Durability of rammed earth walls exposed for 20 years to natural weathering. Build Environ 44(5):912–919

    Article  Google Scholar 

  24. Bui QB, Morel JC, Hans S, Meunier N (2009) Compression behaviour of nonindustrial materials in civil engineering by three scale experiments: the case of rammed earth. Mater Struct 42(8):1101–1116

    Article  Google Scholar 

  25. Bui QB, Morel JC (2009) Assessing the anisotropy of rammed earth. Constr Build Mater 23(9):3005–3011

    Article  Google Scholar 

  26. Bui QB, Hans S, Morel JC, Do AP (2011) First exploratory study on dynamic characteristics of rammed earth buildings. Eng Struct 33(12):3690–3695

    Article  Google Scholar 

  27. Bui QB, Morel JC, Hans S, Walker P (2014) Effect of moisture content on the mechanical characteristics of rammed earth. Constr Build Mater 54:163–169

    Article  Google Scholar 

  28. Bui QB, Morel JC (2014) First exploratory study on the ageing of rammed earth material. Materials 8(1):1–15

    Article  Google Scholar 

  29. Bui QB, Bui TT, Limam A (2016) Assessing the seismic performance of rammed earth walls by using discrete elements. Cogent Eng 3(1):1200835

    Article  Google Scholar 

  30. Bui Q-B, Prud’homme E, Grillet A-C, Prime N (2017), An experimental study on earthen materials stabilized by geopolymer. Lecture notes in civil engineering. Springer, pp 319–328

    Google Scholar 

  31. Bui QB, Limam A, Bui TT (2018) Dynamic discrete element modelling for seismic assessment of rammed earth walls. Eng Struct 175:690–769

    Article  Google Scholar 

  32. Bui QB, Bui TT, El-Nabouch R, Thai DK (2019) Vertical rods as a seismic reinforcement technique for rammed earth walls: an assessment. Adv Civ Eng Article ID 1285937:12 p

    Google Scholar 

  33. Bui QB, Bui TT, Tran MP, Bui TL, Le HA (2019) Assessing the seismic behavior of rammed earth walls with an L-form cross-section. Sustainability 11:1296

    Article  Google Scholar 

  34. Bui QB, Bui TT, Jaffré M, Teytu L (2020) Steel nail embedded in rammed earth wall to support vertical loads: an investigation. Constr Build Mater 234:117836

    Google Scholar 

  35. Bui TL, Bui TT, Bui QB, Nguyen XH, Limam A (2020) Out-of-plane behavior of rammed earth walls under seismic loading: finite element simulation. Structures 24:191–208

    Article  Google Scholar 

  36. Bui TT, Bui QB, Limam A, Maximilien S (2014) Failure of rammed earth walls: from observations to quantifications. Constr Build Mater 51:295–302

    Article  Google Scholar 

  37. Bui TT, Bui QB, Limam A, Morel JC (2015) Modeling rammed earth wall using discrete element method. Continuum Mech Thermodyn 28(1–2):523–538

    MathSciNet  MATH  Google Scholar 

  38. Calderón WR, Muñoz MR (2009) Calibración de modelos de elementos finitos de muros de adobe por optimización. Ingeniería e Investigación 29(2):10–19

    Google Scholar 

  39. Casarotti C, Pinho R (2007) An adaptive capacity spectrum method for assessment of bridges subjected to earthquake action. Bull Earthq Eng 5(3):377–390

    Article  Google Scholar 

  40. Cancino C, Macdonald S, Lardinois S, D’Ayala D, Fonseca C, Torrealva D, Vicente E (2012) The Seismic Retrofitting Project: methodology for seismic retrofitting of historic earthen sites after the 2007 earthquake. In: Proceedings of Terra 2012: 11th international conference on the study and conservation of earthen architecture heritage, Pontifical Catholic University of Peru, Lima, Peru

    Google Scholar 

  41. Ceccotti A, Faccio P, Nart M, Sandhaas C, Simeone P (2006) Seismic behaviour of historic timber-frame buildings in the Italian Dolomites. In: International wood committee-15th international symposium, Istanbul and Rize, Turkey

    Google Scholar 

  42. CEN (2005) Eurocode 8—Design of structures for earthquake resistance. European Committee for Standardization, Brussels

    Google Scholar 

  43. Champiré F, Fabbri A, Morel JC et al (2016) Impact of relative humidity o the mechanical behavior of compacted earth as a building material. Constr Build Mater 110:70–78

    Article  Google Scholar 

  44. Charleson A, Blondet M (2012) Seismic reinforcement for adobe houses with straps from used car tires. Earthq Spectra 28(2):511–530

    Article  Google Scholar 

  45. Chopra A, Goel R (2002) A modal pushover analysis procedure for estimating seismic demands for buildings. Earthq Eng Struct Dynam 31(3):561–582

    Article  Google Scholar 

  46. Ciancio D, Augarde C (2013) Capacity of unreinforced rammed earth walls subject to lateral wind force: elastic analysis versus ultimate strength analysis. Mater Struct 46(9):1569–1585

    Article  Google Scholar 

  47. Ciancio D, Gibbings J (2012) Experimental investigation on the compressive strength of cored and molded cement-stabilized rammed earth specimens. Constr Build Mater 28(1):294–304

    Article  Google Scholar 

  48. Ciancio D, Jaquin P (2011) An overview of some current recommendations on the suitability of soils for rammed earth. In: Proceedings of international workshop on rammed earth materials and sustainable structures & Hakka Tulou forum 2011: structures of sustainability, pp 28–31

    Google Scholar 

  49. Corazao M, Blondet M (1973) Estudio experimental del comportameniento estructural de las construcciones de adobe frente a solicitaciones sísmicas, Banco Peruano de los Constructores, Lima

    Google Scholar 

  50. Cruz H, Moura JP, Machado JS (2001) The use of FRP in the strengthening of timber reinforced masonry load-bearing walls. Historical constructions. Guimarães, Portugal, p 847

    Google Scholar 

  51. Cundall PA (1971) The measurement and analysis of acceleration in rock slopes. Ph.D. Thesis, University of London, United Kingdom

    Google Scholar 

  52. Dowling D, Samali B (2009) Low-cost and low-tech reinforcement systems for improved earthquake resistance of mud brick buildings. In: Hardy M, Cancino C, Ostergren G (eds) Proceedings of Getty Seismic Adobe Project 2006 Colloquium, The Getty Conservation Institute, Los Angeles, USA, pp 23–33

    Google Scholar 

  53. Dutu A, Sakata H, Yamazaki Y (2017) Comparison between different types of connections and their influence on timber frames with masonry infill structures’ seismic behavior. In: 16th world conference on earthquake engineering

    Google Scholar 

  54. El-Nabouch R, Bui QB, Perrotin P, Plé O, Plassiard JP (2015) Numerical modeling of rammed earth constructions: analysis and recommendations. In: Proceedings of 1st international conference on bio-based building materials, Clermont-Ferrand, France

    Google Scholar 

  55. El-Nabouch R, Bui QB, Plé O, Perrotin P (2017) Assessing the in-plane seismic performance of rammed earth walls by using horizontal loading tests. Eng Struct 145:153–161

    Article  Google Scholar 

  56. El-Nabouch R, Bui QB, Plé O, Perrotin P (2018) Characterizing the shear parameters of rammed earth material by using a full-scale direct shear box. Constr Build Mater 171:414–420

    Article  Google Scholar 

  57. El-Nabouch R, Bui Q B, Perrotin P, Plé O (2018) Shear parameters of rammed earth material: results from different approaches. Adv Mater Sci Eng

    Google Scholar 

  58. El-Nabouch R, Bui QB, Plé O, Perrotin P (2019) Rammed earth under horizontal loadings: proposition of limit states. Constr Build Mater 220:238–244

    Article  Google Scholar 

  59. Elnashai A, Gencturk B, Kwon OS, Al-Qadi I, Hashash Y, Roesler J, Kim S, Jeong SH, Dukes J, Valdivia A (2010) The Maule (Chile) earthquake of February 27, 2010: consequence assessment and case studies. MAE Center

    Google Scholar 

  60. Eslami A, Ronagh HR, Mahini SS, Morshed R (2012) Experimental investigation and nonlinear FE analysis of historical masonry buildings. Constr Build Mater 35:251–260

    Article  Google Scholar 

  61. Fagone M, Loccarini F, Ranocchiai G (2017) Strength evaluation of jute fabric for the reinforcement of rammed earth structures. Compos B Eng 113:1–13

    Article  Google Scholar 

  62. Figueiredo A, Varum H, Costa A et al (2013) Seismic retrofitting solution of an adobe masonry wall. Mater Struct 46(1–2):203–219

    Article  Google Scholar 

  63. Fontana P, Miccoli L, Grünberg U (2018) Experimental investigations on the initial shear strength of masonry with earth mortars. Int J Masonry Res Innov 3(1):34–49

    Article  Google Scholar 

  64. Fratini F, Pecchioni E, Rovero L, Tonietti U (2011) The earth in the architecture of the historical centre of Lamezia Terme (Italy): characterization for restoration. Appl Clay Sci 53(3):509–516

    Article  Google Scholar 

  65. Furukawa A, Ohta Y (2009) Failure process of masonry buildings during earthquake and associated casualty risk evaluation. Nat Hazards 49(1):25–51

    Article  Google Scholar 

  66. Galasco A, Lagomarsino S, Penna A (2006) On the use of pushover analysis for existing masonry buildings. In: Proceedings of 1st European conference on earthquake engineering and seismology, Geneva, Switzerland

    Google Scholar 

  67. Gao ZN, Yang XD, Tao Z, Chen ZS, Jiao CJ (2009) Experimental study of rammed-earth wall with bamboo cane under monotonic horizontal-load. J Kunming Univ Sci Technol (Sci Technol) 2:015

    Google Scholar 

  68. Gautam D, Rodrigues H, Bhetwal K et al (2016) Common structural and construction deficiencies of Nepalese buildings. Innov Infrastruct Solut 1(1):1

    Article  Google Scholar 

  69. Gavrilovic P, Sendova V, Ginell WS, Tolles L (1998) Behaviour of adobe structures during shaking table tests and earthquakes. In: Earthquake engineering proceeding of the 11th European conference, Balkema, Rotterdam, Netherlands

    Google Scholar 

  70. Gomes MI, Lopes M, de Brito J (2011) Seismic resistance of earth construction in Portugal. Eng Struct 33(3):932–941

    Article  Google Scholar 

  71. Hall M, Lindsay R, Krayenhoff M (2012) Modern earth buildings—materials, engineering, constructions and applications. Woodhead Publishing, 800p. ISBN: 9780857090263

    Google Scholar 

  72. Hamilton H, McBride J, Grill J (2006) Cyclic testing of rammed-earth walls containing post-tensioned reinforcement. Earthq Spectra 22(4):937–959

    Article  Google Scholar 

  73. Illampas R, Charmpis DC, Ioannou I (2014) Laboratory testing and finite element simulation of the structural response of an adobe masonry building under horizontal loading. Eng Struct 80:362–376

    Article  Google Scholar 

  74. Jaquin PA, Augarde CE, Gallipoli D, Toll DG (2009) The strength of unstabilised rammed earth materials. Géotechnique 59(5):487–490

    Article  Google Scholar 

  75. Jaquin PA, Augarde CE, Gerrard CM (2004) Analysis of Tapial structures for modern use and conservation. In: Proceedings of structural analysis of historical constructions, Padua, Italy, 2004

    Google Scholar 

  76. Jaquin PA, Augarde CE, Gerrard M (2006) Analysis of historic rammed earth construction. In: Proceeding of 5th international conference on structural analysis of historical constructions, New Delhi, India

    Google Scholar 

  77. Kamenjarzh J (1996) Limit analysis of solids and structures. CRC Press

    MATH  Google Scholar 

  78. Kouakou CH, Morel JC (2009) Strength and elasto-plastic properties of non-industrial building materials manufactured with clay as a natural binder. Appl Clay Sci 44:27–34

    Article  Google Scholar 

  79. Lagomarsino S, Podesta S (2004) Seismic vulnerability of ancient churches: I. Damage assessment and emergency planning. Earthq Spectra 20(2):377–394

    Google Scholar 

  80. Langhenbach R (2009) Don’t tear it down. Preserving the earthquake resistant vernacular architecture of Kashmir. United Nations Educational, Scientific and Cultural Organization

    Google Scholar 

  81. Lemos JV (2007) Discrete element modeling of masonry structures. Int J Archit Herit 1(2):190–213

    Article  Google Scholar 

  82. Liberatore D, Spera G, Mucciarelli M, Gallipoli MR, Santarsiero D, Tancredi C et al (2006) Typological and experimental investigation on the adobe buildings of Aliano (Basilicata, Italy). In: Proceeding of the 5th international conference on structural analysis of historical constructions, Macmillan India, New Delhi, India, pp 851–858

    Google Scholar 

  83. Librici C (2016) Modelling of the seismic performance of a rammed earth building. MSc. Thesis, University of Minho, Guimarães

    Google Scholar 

  84. Liu K, Wang M, Wang Y (2015) Seismic retrofitting of rural rammed earth buildings using externally bonded fibers. Constr Build Mater 100:91–101

    Article  Google Scholar 

  85. Liu K, Wang Y, Wang M (2014) Experimental and numerical study of enhancing the seismic behavior of rammed earth buildings. Adv Mater Res 919–921:925–931

    Article  Google Scholar 

  86. Lombillo I, Villegas L, Fodde E, Thomas C (2014) In situ mechanical investigation of rammed earth: calibration of minor destructive testing. Constr Build Mater 51:451–460

    Article  Google Scholar 

  87. Lourenço PB (1996) Computational strategies for masonry structures. Ph.D. Thesis, Technical University of Delft, Netherlands

    Google Scholar 

  88. Lourenço PB (2001) Analysis of historical constructions: from thrust-lines to advanced simulations. In: Proceeding of the historical constructions, Guimarães, Portugal

    Google Scholar 

  89. Lourenço PB (2002) Computations on historic masonry structures. Prog Struct Mat Eng 4(3):301–319

    Article  Google Scholar 

  90. Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123(7):660–668

    Google Scholar 

  91. Lourenço PB, Rots JG, Blaauwendraad J (1998) Continuum model for masonry: parameter estimation and validation. J Struct Eng 124(6):642–652

    Article  Google Scholar 

  92. Lubowiecka I, Armesto J, Arias P, Lorenzo H (2009) Historic bridge modelling using laser scanning, ground penetrating radar and finite element methods in the context of structural dynamics. Eng Struct 31(11):2667–2676

    Article  Google Scholar 

  93. Magenes G, Della Fontana A (1998) Simplified non-linear seismic analysis of masonry buildings. In: Proceedings of Br. Masonry Soc. No. 8

    Google Scholar 

  94. Mahdi T (2005) Behavior of adobe buildings in the 2003 Bam earthquake. In: Proceedings of SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic areas, Pontifical Catholic University of Peru, Lima, Peru

    Google Scholar 

  95. Mahini SS (2015) Smeared crack material modelling for the nonlinear analysis of CFRP-strengthened historical brick vaults with adobe piers. Constr Build Mater 74:201–218

    Article  Google Scholar 

  96. Maniatidis V, Walker P (2008) Structural capacity of rammed earth in compression. J Mater Civ Eng 20(3):230–238

    Article  Google Scholar 

  97. Maniatidis V, Walker P (2003) A review of rammed earth construction. University of Bath

    Google Scholar 

  98. Martins H (2015) Estudio de las propiedades de las fábricas históricas de adobe como soporte a intervenciones de rehabilitación. Ph.D. Thesis, Technical University of Madrid, Madrid

    Google Scholar 

  99. Maskell D, Heath A, Walker PJ (2014) Geopolymer stabilization of unfired earth masonry units. Key Eng Mater 600:175–185

    Article  Google Scholar 

  100. Meireles H, Bento R, Cattari S, Lagomarsino S (2012) A hysteretic model for “frontal” walls in Pombalino buildings. Bull Earthq Eng 10(5):1481–1502

    Article  Google Scholar 

  101. Meli R (2005) Experiencias en México sobre reducción de vulnerabilidad sísmica de construcciones de adobe. In: Proceedings of SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic areas, Pontifical Catholic University of Peru, Lima, Peru

    Google Scholar 

  102. Memari A, Kauffman A (2005) Review of existing seismic retrofit methodologies for adobe dwellings and introduction of a new concept. In: Proceedings of SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic areas, Pontifical Catholic University of Peru, Lima, Peru

    Google Scholar 

  103. Mendes N, Lourenço PB (2009) Seismic assessment of masonry “Gaioleiro” buildings in Lisbon, Portugal. J Earthq Eng 14(1):80–101

    Article  Google Scholar 

  104. Mesbah A, Morel JC, Walker P, Ghavami Kh (2004) Development of a direct tensile test for compacted earth blocks reinforced with natural fibers. J Mater Civ Eng 16(1):95–98

    Article  Google Scholar 

  105. Miccoli L, Drougkas A, Müller U (2016) In-plane behaviour of rammed earth under cyclic loading: experimental testing and finite element modelling. Eng Struct 125:144–152

    Article  Google Scholar 

  106. Miccoli L, Fontana P (2014) Bond strength performances of anchor pins for earthen buildings. A comparison between earth block masonry, rammed earth and cob. In: Proceedings of 9th international conference on structural analysis of historical constructions, Mexico City, Mexico

    Google Scholar 

  107. Miccoli L, Müller U, Fontana P (2014) Mechanical behaviour of earthen materials: a comparison between earth block masonry, rammed earth and cob. Constr Build Mater 61:327–339

    Article  Google Scholar 

  108. Miccoli L, Garofano A, Fontana P, Müller U (2015) Experimental testing and finite element modelling of earth block masonry. Eng Struct 104:80–94

    Article  Google Scholar 

  109. Miccoli L, Oliveira DV, Silva RA et al (2015) Static behaviour of rammed earth: experimental testing and finite element modelling. Mater Struct 48(10):3443–3456

    Article  Google Scholar 

  110. Miccoli L, Fontana P Müller U (2016) In-plane shear behaviour of earthen materials panels strengthened with polyester fabric strips. In: 10th international conference on structural analysis of historical constructions, pp 1099–1105

    Google Scholar 

  111. Miccoli L, Müller U, Pospíšil S (2017) Rammed earth walls strengthened with polyester fabric strips: experimental analysis under in-plane cyclic loading. Constr Build Mater 149:29–36

    Article  Google Scholar 

  112. Miccoli L, Silva RA, Oliveira DV, Müller U (2019) Static behaviour of cob: experimental testing and finite-element modeling. J Mater Civ Eng 31(4):04019021

    Article  Google Scholar 

  113. Michiels TLG (2015) Seismic retrofitting techniques for historic adobe buildings. Int J Archit Herit 9(8):1059–1068

    Article  Google Scholar 

  114. Minke G (2006) Building with Earth: design and technology of a sustainable architecture. Birkhauser Basel, Berlin

    Google Scholar 

  115. Mostafa M, Uddin N (2016) Experimental analysis of Compressed Earth Block (CEB) with banana fibers resisting flexural and compression forces. Case studies in construction materials, vol 5, pp 53–63

    Google Scholar 

  116. Moreira Sturm T (2015) Experimental characterization of dry-stack interlocking compressed earth block masonry. Ph.D. Thesis, University of Minho, Portugal

    Google Scholar 

  117. Morel JC, Mesbah A, Oggero M, Walker P (2001) Building houses with local materials: means to drastically reduce the environmental impact of construction. Build Environ 36(10):1119–1126

    Article  Google Scholar 

  118. Morel JC, Pkla A, Walker P (2007) Compressive strength testing of compressed earth blocks. Constr Build Mater 21(2):303–309

    Article  Google Scholar 

  119. Müller U, Miccoli L, Fontana P (2016) Development of a lime based grout for cracks repair in earthen constructions. Constr Build Mater 110:323–332

    Article  Google Scholar 

  120. Nanjunda Rao KS, Anitha M, Venkatarama Reddy BV (2015) Dynamic behavior of scaled Cement Stabilized Rammed Earth building models. In: Ciancio D, Beckett C (eds) Rammed earth construction cutting-edge research on traditional and modern rammed earth. Taylor & Francis

    Google Scholar 

  121. Nowamooz H, Chazallon C (2011) Finite element modelling of a rammed earth wall. Constr Build Mater 25(4):2112–2121

    Article  Google Scholar 

  122. NZS 4298 (1998) Materials and workmanship for earth buildings. Standards New Zealand, Wellington

    Google Scholar 

  123. Oliveira DV (2003) Experimental and numerical analysis of blocky masonry structures under cyclic loading. Ph.D. Thesis, University of Minho, Portugal

    Google Scholar 

  124. Orduña A, Roeder G, Araiza JC (2006) Development of macro-block models for masonry walls subject to lateral loading. In: Proceedings of structural analysis of historic construction, New Delhi, India, pp 1075–1082

    Google Scholar 

  125. Ortega Heras J, Vasconcelos G, Lourenço PB, Correia M, Rodrigues H, Varum H (2015) Evaluation of seismic vulnerability assessment parameters for Portuguese vernacular constructions with nonlinear numerical analysis. In: 5th Proceeding ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering, Crete Island, Greece

    Google Scholar 

  126. Parisi MA, Piazza M (2008) Seismic strengthening of traditional carpentry joints. In: Proceedings of 14th conference of earthquake engineering, Bei**g

    Google Scholar 

  127. Penna A, Lagomarsino S, Galasco A (2014) A nonlinear macroelement model for the seismic analysis of masonry buildings. Earthq Eng Struct Dynam 43(2):159–179

    Article  Google Scholar 

  128. Poletti E, Vasconcelos G (2015) Seismic behaviour of traditional timber frame walls: experimental results on unreinforced walls. Bull Earthq Eng 13(3):885–916

    Article  Google Scholar 

  129. Quagliarini E, Maracchini G. (2018). Experimental and FEM investigation of cob walls under compression. Adv Civ Eng 2018

    Google Scholar 

  130. Quagliarini E, Lenci S (2010) The influence of natural stabilizers and natural fibres on the mechanical properties of ancient Roman adobe bricks. J Cult Herit 11(3):309–314

    Article  Google Scholar 

  131. Quagliarini E, Stazi A, Pasqualini E, Fratalocchi E (2010) Cob construction in Italy: some lessons from the past. Sustainability 2:3291–3308

    Google Scholar 

  132. Quinn N, D’Ayala D (2014) In-plane experimental testing on historic Quincha walls. In: 9th international conference on structural analysis of historical constructions

    Google Scholar 

  133. Rafi MM, Lodi SH (2017) Comparison of dynamic behaviours of retrofitted and unretrofitted cob material walls. Bull Earthq Eng 15:3855–3869

    Article  Google Scholar 

  134. Rafsanjani SH, Bakhshi A, Ghannad MA et al (2015) Predictive tri-linear benchmark curve for in-plane behavior of adobe walls. Int J Archit Herit

    Google Scholar 

  135. Reddy VBV, Gupta A (2006) Strength and elastic properties of stabilized mud block masonry using cement-soil mortars. J Mater Civ Eng 18(3):472

    Article  Google Scholar 

  136. Rivera J, Muñoz E (2005) Caracterización estructural de materiales de sistemas constructivos en tierra: el adobe. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil 5(2):135–148

    Google Scholar 

  137. Ruggieri N, Tampone G, Zinno R (2015) In-plane versus out-of-plane “behavior” of an Italian timber framed system—the Borbone constructive system: historical analysis and experimental evaluation. Int J Archit Herit 9(6):696–711

    Article  Google Scholar 

  138. Ruiz D, López C, Unigarro S, Domínguez M (2014) Seismic rehabilitation of sixteenth-and seventeenth-century rammed earth-built churches in the Andean Highlands: field and laboratory study. J Perform Constr Facil 29(6):04014144

    Article  Google Scholar 

  139. San Bartolomé A, Pehovaz R (2005) Comportamiento a carga lateral cíclica de muros de adobe confinados. In: Proceedings of SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic areas, Pontifical Catholic University of Peru, Lima, Peru

    Google Scholar 

  140. Soudani L, Fabbri A, Morel JC et al (2016) Assessment of the validity of some common assumptions in hygrothermal modeling of earth based materials. Energy Build 116:498–511

    Article  Google Scholar 

  141. Silva R, Olliveira D, Schueremans L et al (2014) Shear behaviour of rammed earth walls repaired by means of grouting. In: 9th international masonry conference, pp 1–12

    Google Scholar 

  142. Silva RA, Oliveira DV, Schueremans L et al (2016) Effectiveness of the repair of unstabilised rammed earth with injection of mud grouts. Constr Build Mater 127:861–871

    Article  Google Scholar 

  143. Silva RA, Schueremans L, Oliveira DV et al (2012) On the development of unmodified mud grouts for repairing earth constructions: rheology, strength and adhesion. Mater Struct 45(10):1497–1512

    Article  Google Scholar 

  144. Silva RA, Oliveira DV, Schueremans L, Lourenço PB, Miranda T (2014) Modelling the structural behaviour of rammed earth components. In: Proceeding of the 12th international conference on computational structures technology

    Google Scholar 

  145. Silveira D, Varum H, Costa A (2013) Influence of the testing procedures in the mechanical characterization of adobe bricks. Constr Build Mater 40:719–728

    Article  Google Scholar 

  146. Silveira D, Varum H, Costa A et al (2012) Mechanical properties of adobe bricks in ancient constructions. Constr Build Mater 28(1):36–44

    Article  Google Scholar 

  147. Silveira D, Varum H, Costa A, Carvalho J (2015) Mechanical properties and behavior of traditional adobe wall panels of the Aveiro district. J Mater Civ Eng 27(9):04014253

    Article  Google Scholar 

  148. Solís M, Torrealva D, Santillán P, Montoya G (2015) Análisis del comportamiento a flexión de muros de adobe reforzados con geomallas. Inf Constr 67(539):1–10

    Article  Google Scholar 

  149. Standards Australia (2002) The Australian earth building handbook. Standards Australia, Sydney, Australia

    Google Scholar 

  150. Taylor P, Fuller RJ, Luther MB (2008) Energy use and thermal comfort in a rammed earth office building. Energy Build 40(5):793–800

    Article  Google Scholar 

  151. Tarque N, Camata G, Varum H et al (2014) Numerical simulation of an adobe wall under in-plane loading. Earthq Struct 6(6):627–646

    Article  Google Scholar 

  152. Tolles E (2009) Getty Seismic Adobe Project research and testing program. In: Proceedings of the Getty Seismic Adobe Project 2006 Colloquium, The Getty Conservation Institute, Los Angeles, USA, pp 34–41

    Google Scholar 

  153. Torrealva D Acero J (2005) Reinforcing adobe buildings with exterior compatible mesh. The final solution against the seismic vulnerability. In: Proceedings of the SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic areas, Pontifical Catholic University of Peru, Lima, Peru

    Google Scholar 

  154. Torrealva D, Vargas J, Blondet M (2009) Earthquake resistant design criteria and testing of adobe buildings at Pontificia Universidad Católica del Perú. In: Proceedings of the Getty Seismic Adobe Project 2006 Colloquium. The Getty Conservation Institute, Los Angeles, USA, pp 3–10

    Google Scholar 

  155. Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthq Eng Struct Dynam 31(3):491–514

    Article  Google Scholar 

  156. Varum H, Figueiredo A, Silveira D et al (2011) Outputs from the research developed at the University of Aveiro regarding the mechanical characterization of existing adobe constructions in Portugal. Inf Constr 63(523):127–142

    Article  Google Scholar 

  157. Vasconcelos G, Poletti E (2015) Traditional timber frame walls: mechanical behavior analysis. Handbook of research on seismic assessment and rehabilitation of historic structures, pp 30–59

    Google Scholar 

  158. Vasconcelos G, Poletti E, Salavessa E et al (2013) In-plane shear behaviour of traditional timber walls. Eng Struct 56:1028–1048

    Article  Google Scholar 

  159. Vera R, Miranda S (2005) Reparación de muros de adobe con el uso de mallas sintéticas. In: Proceedings of SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic areas, Pontifical Catholic University of Peru, Lima, Peru

    Google Scholar 

  160. Vieux-Champagne F, Sieffert Y, Grange S et al (2014) Experimental analysis of seismic resistance of timber-framed structures with stones and earth infill. Eng Struct 69:102–115

    Article  Google Scholar 

  161. Vieux-Champagne F, Sieffert Y, Grange S et al (2017) Experimental analysis of a shake table test of timber-framed structures with stone and earth infill. Earthq Spectra 33(3):1075–1100

    Article  Google Scholar 

  162. Vintzileou E (2008) Effect of timber ties on the behavior of historic masonry. J Struct Eng 134(6):961–972

    Article  Google Scholar 

  163. Walker P (1995) Strength, durability and shrinkage characteristics of cement stabilised soil blocks. Cement Concr Compos 17(4):301–310

    Article  Google Scholar 

  164. Walker P, Dobson S (2001) Pullout tests on deformed and plain rebars in cement-stabilized rammed earth. J Mater Civ Eng 13(4):291–297

    Article  Google Scholar 

  165. Walker P, Keable R, Martin J, Maniatidis V (2005) Rammed Earth—design and construction guidelines. BRE Bookshop

    Google Scholar 

  166. Walker R, Morris H (1998) Development of new performance based standards for earth building. In: Proceedings of the Australasian structural engineering conference, Auckland, pp 477–84

    Google Scholar 

  167. Wang Y, Wang M, Liu K et al (2016) Shaking table tests on seismic retrofitting of rammed-earth structures. Bull Earthq Eng 15(3):1037–1055

    Article  Google Scholar 

  168. Wang Y, Wang M, Liu K, Wen P, Yang X (2017) Shaking table tests on seismic retrofitting of rammed-earth structures. Bull Earthq Eng 15:1037–1055

    Article  Google Scholar 

  169. Webster F (2009) Application of stability-based retrofit measures on some historic and older adobe buildings in California. In: Proceeding of the Getty Seismic Adobe Project 2006 Colloquium, The Getty Conservation Institute, Los Angeles, USA, pp 147–158

    Google Scholar 

  170. Webster F, Tolles E (2000) Earthquake damage to historic and older adobe buildings during the 1994 Northridge, California Earthquake. In: Proceedings of the 12th world conference on earthquake engineering, New Zealand Society for Earthquake Engineering, Auckland, New Zealand

    Google Scholar 

  171. Wu F, Li G, Li HN, Jia JQ (2013) Strength and stress-strain characteristics of traditional adobe block and masonry. Mater Struct 46(9):1449–1457

    Article  Google Scholar 

  172. Yamín L, Phillips C, Reyes J, Ruiz D (2007) Estudios de vulnerabilidad sísmica, rehabilitación y refuerzo de casas en adobe y tapia pisada. Apuntes 20(2):286–303

    Google Scholar 

  173. Zanotti S (2015) Seismic analysis of the church of Kuñoo Tambo (Peru). Msc. Thesis, University of Minho, Portugal

    Google Scholar 

Download references

Acknowledgements

This chapter is prepared in the case of the RILEM Technical Committee TC 279-TCE (Testing and characterisation of earth-based building materials and elements).

The authors wish to thank the French National Research Agency (ANR) for funding the PRIMATERRE project (ANR-12-Villes et Bâtiments Durables). Several results presented in this paper are the outcome of this project.

The funding from the ReBuMAT project (German-Vietnamese Collaborative Project on Resource-efficient Construction using Sustainable Building Materials) is acknowledged.

Part of this work was also carried out within the framework of project POCI-01-0145-FEDER-016737 (PTDC/ECM-EST/2777/2014), financed by FEDER funds through the Competitivity Factors Operational Programme—COMPETE and by FCT—Foundation for Science and Technology. The funding provided is kindly acknowledged.

This work was partly financed by FEDER funds through the Competitivity Factors Operational Programme—COMPETE and by national funds through FCT—Foundation for Science and Technology within the scope of project SafEarth (PTDC/ECM-EST/2777/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quoc-Bao Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bui, QB. et al. (2022). Seismic Assessment of Earthen Structures. In: Fabbri, A., Morel, JC., Aubert, JE., Bui, QB., Gallipoli, D., Reddy, B.V. (eds) Testing and Characterisation of Earth-based Building Materials and Elements. RILEM State-of-the-Art Reports, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-83297-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83297-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83296-4

  • Online ISBN: 978-3-030-83297-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation