Human Age Estimation Using Deep Learning from Gait Data

  • Conference paper
  • First Online:
Applied Intelligence and Informatics (AII 2021)

Abstract

Identifying people’s ages and events by the use of gait information is a popular issue in our daily applications. The most popular application is health, security, entertainment and charging. A variety of algorithms for data mining and deep learning have been proposed. Many different technologies may be used to keep track of people’s ages and behaviors. Existing approaches and technologies are limited by their performance, as well as their privacy and deployment costs. For example CCTV or Kinect sensor technology constitutes a privacy offense and most people do not want to make pictures or videos when they are working every day. The inertial sensor-based gait data collection is a recent addition to the gait analysis field. We have identified the age of people in this paper from an inertial sensor-data. We obtained the gait data from the University of Osaka. Convolution Neural Network (CNN) and LSTM-Based Convolution Neural Network (LSTM-CNN) are two deep learning algorithms that have been used to predict people’s ages. The accuracy of age prediction via CNN is around 71.45%, while it is around 65.53% via CNN-LSTM, according to the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hillewig, E., et al.: Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation: towards more sound age estimates. Int. J. Legal Med. 127(3), 677–689 (2013)

    Article  Google Scholar 

  2. Thevissen, P.W., Kaur, J., Willems, G.: Human age estimation combining third molar and skeletal development. Int. J. Legal Med. 126(2), 285–292 (2012)

    Article  Google Scholar 

  3. Ranjan, R., et al.: Unconstrained age estimation with deep convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops. pp. 109–117 (2015)

    Google Scholar 

  4. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  5. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955–1976 (2010)

    Article  Google Scholar 

  6. Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(1), 621–628 (2004)

    Google Scholar 

  7. Luu, K., Ricanek, K., Bui, T.D., Suen, C.Y.: Age estimation using active appearance models and support vector machine regression. In: 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–5. IEEE (2004)

    Google Scholar 

  8. Gao, F., Ai, H.: Face age classification on consumer images with Gabor feature and fuzzy LDA method. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 132–141. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01793-3_14

    Chapter  Google Scholar 

  9. Muro-De-La-Herran, A., Garcia-Zapirain, B., Mendez-Zorrilla, A.: Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 14(2), 3362–3394 (2014)

    Article  Google Scholar 

  10. Ngo, T.T., Makihara, Y., Nagahara, H., Mukaigawa, Y., Yagi, Y.: The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recogn. 47(1), 228–237 (2014)

    Article  Google Scholar 

  11. Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learning in mining biological data. Cogn. Comput. 13(1), 1–33 (2021)

    Article  Google Scholar 

  12. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  13. Kaiser, M.S., et al.: iWorkSafe: towards healthy workplaces during COVID-19 with an intelligent pHealth app for industrial settings. IEEE Access 9, 13814–13828 (2021)

    Article  Google Scholar 

  14. Pathan, R.K., Uddin, M.A., Nahar, N., Ara, F., Hossain, M.S., Andersson, K.: Gender classification from inertial sensor-based gait dataset. In: Vasant, P., Zelinka, I., Weber, G.W. (eds.) ICO 2020. AISC, vol. 1324, pp. 583–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68154-8_51

    Chapter  Google Scholar 

  15. Khabir, K.M., Siraj, M.S., Ahmed, M., Ahmed, M.U.: Prediction of gender and age from inertial sensor-based gait dataset. In: 2019 Joint 8th International Conference on Informatics, Electronics and Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision and Pattern Recognition (icIVPR), pp. 371–376. IEEE, May 2019

    Google Scholar 

  16. Riaz, Q., Vögele, A., Krüger, B., Weber, A.: One small step for a man: estimation of gender, age and height from recordings of one step by a single inertial sensor. Sensors 15(12), 31999–32019 (2015)

    Article  Google Scholar 

  17. Makihara, Y., Mannami, H., Yagi, Y.: Gait analysis of gender and age using a large-scale multi-view gait database. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6493, pp. 440–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-19309-5_34

    Chapter  Google Scholar 

  18. Garofalo, G., Argones Rúa, E., Preuveneers, D., Joosen, W.: A systematic comparison of age and gender prediction on IMU sensor-based gait traces. Sensors 19(13), 2945 (2019)

    Article  Google Scholar 

  19. Ngo, T.T., et al.: OU-ISIR wearable sensor-based gait challenge: age and gender. In: 2019 International Conference on Biometrics (ICB), pp. 1–6. IEEE, June 2019

    Google Scholar 

  20. Riaz, Q., Hashmi, M.Z.U.H., Hashmi, M.A., Shahzad, M., Errami, H., Weber, A.: Move your body: age estimation based on chest movement during normal walk. IEEE Access 7, 28510–28524 (2019)

    Article  Google Scholar 

  21. Sakata, A., Takemura, N., Yagi, Y.: Gait-based age estimation using multi-stage convolutional neural network. IPSJ Trans. Comput. Vis. Appl. 11(1), 1–10 (2019). https://doi.org/10.1186/s41074-019-0054-2

    Article  Google Scholar 

  22. Makihara, Y., Okumura, M., Iwama, H., Yagi, Y.: Gait-based age estimation using a whole-generation gait database. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–6. IEEE, October 2011

    Google Scholar 

  23. Lu, J., Tan, Y.P.: Gait-based human age estimation. IEEE Trans. Inf. Forensics Secur. 5(4), 761–770 (2010)

    Article  Google Scholar 

  24. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)

    Google Scholar 

  25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  26. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

    Article  Google Scholar 

  27. Islam, M.Z., Hossain, M.S., ul Islam, R., Andersson, K.: Static hand gesture recognition using convolutional neural network with data augmentation. In: 2019 Joint 8th International Conference on Informatics, Electronics and Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision and Pattern Recognition (icIVPR), pp. 324–329. IEEE, May 2019

    Google Scholar 

  28. Ahmed, T.U., Hossain, S., Hossain, M.S., ul Islam, R., Andersson, K.: Facial expression recognition using convolutional neural network with data augmentation. In: 2019 Joint 8th International Conference on Informatics, Electronics and Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision and Pattern Recognition (icIVPR), pp. 336–341. IEEE, May 2019

    Google Scholar 

  29. Abedin, M.Z., Nath, A.C., Dhar, P., Deb, K., Hossain, M.S. : License plate recognition system based on contour properties and deep learning model. In: 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp. 590–593. IEEE, December 2017

    Google Scholar 

  30. Kabir, S., Islam, R.U., Hossain, M.S., Andersson, K.: An integrated approach of belief rule base and deep learning to predict air pollution. Sensors 20(7), 1956 (2020)

    Article  Google Scholar 

  31. Ahmed, T.U., Hossain, M.S., Alam, M.J., Andersson, K.: An integrated CNN-RNN framework to assess road crack. In: 2019 22nd International Conference on Computer and Information Technology (ICCIT), pp. 1–6. IEEE, December 2019

    Google Scholar 

  32. Chowdhury, R.R., Hossain, M.S., Hossain, S., Andersson, K.: Analyzing sentiment of movie reviews in bangla by applying machine learning techniques. In: 2019 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–6. IEEE, September 2019

    Google Scholar 

  33. Zisad, S.N., Hossain, M.S., Andersson, K.: Speech emotion recognition in neurological disorders using convolutional neural network. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS, vol. 12241, pp. 287–296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_26

    Chapter  Google Scholar 

  34. Uddin Ahmed, T., Jamil, M.N., Hossain, M.S., Andersson, K., Hossain, M.S.: An integrated real-time deep learning and belief rule base intelligent system to assess facial expression under uncertainty. In: 9th International Conference on Informatics, Electronics and Vision (ICIEV). IEEE Computer Society (2020)

    Google Scholar 

  35. Islam, R.U., Hossain, M.S., Andersson, K.: A deep learning inspired belief rule-based expert system. IEEE Access 8, 190637–190651 (2020)

    Article  Google Scholar 

  36. Nahar, N., Hossain, M.S., Andersson, K.: A machine learning based fall detection for elderly people with neurodegenerative disorders. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS, vol. 12241, pp. 194–203. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_18

    Chapter  Google Scholar 

  37. Basnin, N., Nahar, L., Hossain, M.S.: An integrated CNN-LSTM model for micro hand gesture recognition. In: Vasant, P., Zelinka, I., Weber, G.W. (eds.) ICO 2020. AISC, vol. 1324, pp. 379–392. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68154-8_35

    Chapter  Google Scholar 

  38. Hossain, E., Shariff, M.A.U., Hossain, M.S., Andersson, K.: A novel deep learning approach to predict air quality index. In: Kaiser, M.S., Bandyopadhyay, A., Mahmud, M., Ray, K. (eds.) Proceedings of International Conference on Trends in Computational and Cognitive Engineering. AISC, vol. 1309, pp. 367–381. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4673-4_29

    Chapter  Google Scholar 

  39. Nahar, N., Ara, F., Neloy, M.A.I., Barua, V., Hossain, M.S., Andersson, K.: A comparative analysis of the ensemble method for liver disease prediction. In: 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET), pp. 1–6. IEEE, December 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shahadat Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pathan, R.K., Uddin, M.A., Nahar, N., Ara, F., Hossain, M.S., Andersson, K. (2021). Human Age Estimation Using Deep Learning from Gait Data. In: Mahmud, M., Kaiser, M.S., Kasabov, N., Iftekharuddin, K., Zhong, N. (eds) Applied Intelligence and Informatics. AII 2021. Communications in Computer and Information Science, vol 1435. Springer, Cham. https://doi.org/10.1007/978-3-030-82269-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82269-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82268-2

  • Online ISBN: 978-3-030-82269-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation