A Neuro-Fuzzy Model for Fault Detection, Prediction and Analysis for a Petroleum Refinery

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 296))

Included in the following conference series:

  • 1532 Accesses

Abstract

The paper describes data fusion using a neuro-fuzzy system for fault detection, prediction, and analysis of petroleum refining operations and other process industries. The model described in this paper involves algorithms applied to multi-sensor fusion using historical data to create a trend analysis. The main objective is to detect anomalies in sensor data and to predict future catastrophes. Data mining is applied to find anomalies in data sets. Neuro-fuzzy logic is used to find clusters of inputs using subtractive fuzzy clustering. Fault detection and prognosis are essential in a safety-critical environment such as a refinery. A new set of data is obtained and represented using the fuzzy inference system, with three linguistic values used to define and classify the patterns and failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Patton, J., Lopez-Toribio, C., Uppal, F.: Artificial Intelligence Approaches to fault diagnosis for dynamic systems. J. Appl. Math. Comput. Sci. 9(3), 471–518 (1999)

    MATH  Google Scholar 

  2. Frank, P.: Fault diagnosis in dynamic systems using analytical and knowledge based redundancy-a survey and some new results. Automatica 26(3), 459–474 (1990)

    Article  Google Scholar 

  3. Patton, R.., Frank, P., Clark, R.: Fault Diagnosis in Dynamic Systems: Theory and Application. Prentice Hall N (1989)

    Google Scholar 

  4. Sanders, D.: Intelligent knowledge-based system for electrical fault diagnosis in a vehicle. J. Intell. Mobil. 7(3), 104–110 (2004)

    Google Scholar 

  5. Gertler, J.: Residual generation in model-based fault diagnosis. Control - Theory Adv. Technol. 9(1), 259–285 (1993)

    MathSciNet  Google Scholar 

  6. Patton, R., Chen, J., Nielsen, S.: Model-based methods for fault diagnosis: some guide-lines. Trans. Inst. Measur. Control (Trans. Inst. MC) 17(2), 73–83 (1995)

    Article  Google Scholar 

  7. Patton, R., Chen, J.: Robust fault detection and isolation (FDI) systems. In: Leondes, C.T., (ed.) Techniques in Discrete and Continuous Robust Systems, Dynamics & Control Series 74, pp. 171–224, Academic Press (1996)

    Google Scholar 

  8. Naidu, S., Zafirou, E., McAvoy, T.: Use of neural-networks for failure detection in a control system. IEEE Control Sys. Magazine 10, 49–55 (1990)

    Article  Google Scholar 

  9. Hoskins, J., Himmelblau, D.: Artificial neural network models of knowledge representation in chemical engineering. Comput. Chem. Eng. 12(9), 881–890 (1988)

    Article  Google Scholar 

  10. Leonard, J., Kramer, M.: Diagnosing dynamic faults using modular neural-nets. IEEE Expert Magazine 3, 44–53 (1993)

    Article  Google Scholar 

  11. Patton, R., Chen, J.: Neural networks in nonlinear dynamic systems fault diagnosis. Engineering Simulation (special issue on “Engineering Diagnostics”) 13(6), 905–924 (1996)

    Google Scholar 

  12. Wang, H., Brown, M., Harris, C.: Fault detection for a class of unknown non-linear systems via associative memory networks. Proc. IMechE: J. Sys. Contr. Eng. 208, 101–107 (1994)

    Google Scholar 

  13. Frank, P.: Kuipel: fuzzy supervision and application to lean production. Int. J. Sys. Sci. 24(10), 1935–1944 (1993)

    Article  Google Scholar 

  14. Isermann, R., Ulieru, M.: Integrated fault detection and diagnosis. In: Proceedings of the 1993 IEEE Conference on Systems, Man & Cybernetics, Le Touquet, France, pp. 743–748 (1993)

    Google Scholar 

  15. Dexter, A.: Fuzzy model based fault diagnosis. IEE Proc. Control Theory Appl. 142(6), 545–550 (1995)

    Article  Google Scholar 

  16. Omoarebun, P.: Disaster risk reduction in petroleum engineering. J. Comput. Syst. Eng. (2018)

    Google Scholar 

  17. Ikwan, F.: Reducing energy losses and alleviating risk in petroleum engineering using decision making and alarm systems. J. Comput. Syst. Eng. (2018)

    Google Scholar 

  18. Shann, J., Fu, H.: A fuzzy neural network for rule acquiring on fuzzy control systems. Fuzzy Sets Syst. 71, 345–357 (1995)

    Article  Google Scholar 

  19. Omoarebun, P., Sanders, D., Haddad, M., Hassan, M., Tewkesbury, G., Giasin, K.: An intelligent monitoring system for a crude oil distillation column. In: 2020 IEEE 10th International Conference on Intelligent Systems (IS), pp. 159–164. IEEE (2020)

    Google Scholar 

  20. Zadeh, L.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3(1), 28–44 (1973)

    Article  MathSciNet  Google Scholar 

  21. Sanders, D., Okono, O., Langner, M., Hassan, M., Khaustov, S., Omoarebun, P.: Using a simple expert system to assist a powered wheelchair user. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) IntelliSys 2019. AISC, vol. 1037, pp. 662–679. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29516-5_50

    Chapter  Google Scholar 

  22. Sanders, D., et al.: Intelligent control and HCI for a powered wheelchair using a simple expert system and ultrasonic sensors. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2020. AISC, vol. 1252, pp. 571–583. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55190-2_42

    Chapter  Google Scholar 

  23. Sanders, D., Haddad, M., Tewkesbury, G.E., Thabet, M., Omoarebun, P., Barker, T.: Simple expert system for intelligent control and HCI for a wheelchair fitted with ultrasonic sensors. In: 2020 IEEE 10th International Conference on Intelligent Systems (IS), pp. 211–216. IEEE (2020)

    Google Scholar 

  24. Omoarebun, P., et al.: Intelligent monitoring using hazard identification technique and multi-sensor data fusion for crude oil distillation column. In: IntelliSys 2020. Advances in Intelligent Systems and Computing, vol. 1252. Springer, Cham, pp. 727–741 (2020). doi: https://doi.org/10.1007/978-3-030-55190-2_61

  25. Haddad, M., Sanders, D., Tewkesbury, G., Bausch, N.: Integrating statistical correlation with discrete multi-criteria decision making. Int. J. Inf. Decis. Sci. 13(1), 1–15 (2021)

    Google Scholar 

  26. Sanders, D., Haddad, M., Tewkesbury, G., Barker, T., Langner, M., Gegov, A.: Intelligent assistive systems for the control and analysis of reaction times for a smart wheelchair. Advances in Intelligent Systems Research and Innovation. Studies in Systems, Decision and Control. Springer (2021)

    Google Scholar 

  27. Haddad, M., Sanders, D.: Deep Learning architecture to assist with steering a powered wheelchair. IEEE Trans. Neural Syst. Rehabil. Eng. 28(12), 2987–2994 (2020)

    Article  Google Scholar 

  28. Ikwan, F.C., Sanders, D., Haddad, M.: A Combined AHP-PROMETHEE Approach for Intelligent Risk Prediction of Leak in a Storage Tank. Int. J. Reliability Risk Safety (2020)

    Google Scholar 

  29. Thabet, M., Sanders, D., Tewkesbury, G., Becerra, V.: Intelligent energy management of compressed air systems. In: 2020 IEEE 10th International Conference on Intelligent Systems (IS). IEEE IS Proceedings Series, pp. 153–158 (2020)

    Google Scholar 

  30. Thabet, M., et al.: Management of compressed air to reduce energy consumption using intelligent systems. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2020. AISC, vol. 1252, pp. 206–217. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55190-2_16

    Chapter  Google Scholar 

  31. Haddad, M., et al.: Use of the analytical hierarchy process to determine the steering direction for a powered wheelchair. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2020. AISC, vol. 1252, pp. 617–630. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55190-2_46

    Chapter  Google Scholar 

  32. Haddad, M., Sanders, D.: Artificial Neural Network approach for business decision making applied to a corporate relocation problem. Arch. Bus. Res. 8(6), 180–195 (2020)

    Article  Google Scholar 

  33. Haddad, M., Sanders, D., Tewkesbury, G.: Selecting a discrete multiple criteria decision making method for Boeing to rank four global market regions. Transp. Res. Part A Policy Pract. 134, 1–15 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Omoarebun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Omoarebun, P., Sanders, D., Ikwan, F., Haddad, M., Tewkesbury, G., Hassan, M. (2022). A Neuro-Fuzzy Model for Fault Detection, Prediction and Analysis for a Petroleum Refinery. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-82199-9_59

Download citation

Publish with us

Policies and ethics

Navigation