Intelligent User Interface to Control a Powered Wheelchair Using Infrared Sensors

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 294))

Included in the following conference series:

  • 1365 Accesses

Abstract

This paper presents a new system to steer a powered wheelchair using a Sharp IR sensor and a Raspberry Pi. Interviews with occupational therapists, helpers and carers at Chailey Heritage Foundation/School revealed that clicking noises generated from closing switch contact used to operate powered wheelchairs disturbed the attention and reduced the focus of young wheelchair users having cognitive or physical disability. Also switches often slipped away and became unreachable. The new system replaced lever-switches used to steer powered wheelchairs by an electronic circuit. The circuit consisted of a Sharp IR sensor, Analogue to Digital converter, relays, and a Raspberry Pi. The sharp IR sensor detected movement in its range and the Raspberry Pi interpreted the data and generated commands to steer a powered wheelchair. Two modes were used to overcome the problem of sensors slip** from position: Click to Calibrate and Auto-Calibrate. A technical User Interface was created to modify sensitivity, user and detection settings. Practical testing showed the system behaved satisfactorily. It detected users’ voluntary movements and used them to steer a powered wheelchair and overcome the problem of switches slip** from position. Clinical trials will be conducted at Chailey Heritage Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanders, D., Gegov, A.: Using artificial intelligence to share control of a powered-wheelchair between a wheelchair user and an intelligent sensor system. EPSRC Project 2019–2022 (2018)

    Google Scholar 

  2. Haddad, M.J., Sanders, D.A.: Deep Learning architecture to assist with steering a powered wheelchair. IEEE Trans. Neural Syst. Rehabil. Eng. 28(12), 2987–2994 (2020)

    Article  Google Scholar 

  3. Krops, L.A., Hols, D.H., Folkertsma, N., Dijkstra, P.U., Geertzen, J.H., Dekker, R.: Requirements on a community-based intervention for stimulating physical activity in physically disabled people: a focus group study amongst experts. Disabil. Rehabil. 40(20), 2400–2407 (2018)

    Article  Google Scholar 

  4. Bos, I., Wynia, K., Almansa, J., Drost, G., Kremer, B., Kuks, J.: The prevalence and severity of disease-related disabilities and their impact on quality of life in neuromuscular diseases. Disabil. Rehabil. 41(14), 1676–1681 (2019)

    Article  Google Scholar 

  5. Frank, A.O., De Souza, L.H.: Clinical features of children and adults with a muscular dystrophy using powered indoor/outdoor wheelchairs: disease features, comorbidities and complications of disability. Disabil. Rehabil. 40(9), 1007–1013 (2018)

    Article  Google Scholar 

  6. Sanders, D.A., Langner, M., Tewkesbury, G.E.: Improving wheelchair-driving using a sensor system to control wheelchair-veer and variable-switches as an alternative to digital-switches or joysticks. Ind. Robot Int. J. 32(2), 157–167 (2010)

    Article  Google Scholar 

  7. Langner, M.: Effort reduction and collision avoidance for powered wheelchairs: SCAD Assistive Mobility System, Doctoral dissertation, University of Portsmouth (2012)

    Google Scholar 

  8. Sanders, D.A.: Using self-reliance factors to decide how to share control between human powered wheelchair drivers and ultrasonic sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 25(8), 1221–1229 (2016)

    Article  Google Scholar 

  9. Haddad, M., Sanders, D., Gegov, A., Hassan, M., Huang, Y., Al-Mosawi, M.: Combining multiple criteria decision making with vector manipulation to decide on the direction for a powered wheelchair. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) IntelliSys 2019. AISC, vol. 1037, pp. 680–693. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29516-5_51

    Chapter  Google Scholar 

  10. Haddad, M., Sanders, D., Langner, M., Ikwan, F., Tewkesbury, G., Gegov, A.: Steering direction for a powered-wheelchair using the analytical hierarchy process. In: Proceedings of the 2020 IEEE 10th International Conference on Intelligent Systems (IS), pp. 229–234. IEEE, Bulgaria (2020)

    Google Scholar 

  11. Haddad, M., et al.: Use of the analytical hierarchy process to determine the steering direction for a powered wheelchair. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2020. AISC, vol. 1252, pp. 617–630. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55190-2_46

    Chapter  Google Scholar 

  12. Haddad, M.J., Sanders, D.A.: Selecting a best compromise direction for a powered wheelchair using PROMETHEE. IEEE Trans. Neural Syst. Rehabil. Eng. 27(2), 228–235 (2019)

    Article  Google Scholar 

  13. Sanders, D.A., Bausch, N.: Improving steering of a powered wheelchair using an expert system to interpret hand tremor. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds.) ICIRA 2015. LNCS (LNAI), vol. 9245, pp. 460–471. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22876-1_39

    Chapter  Google Scholar 

  14. Sanders, D.A., Haddad, M., Tewkesbury, G.E., Thabet, M., Omoarebun, P., Barker, T.: Simple expert system for intelligent control and HCI for a wheelchair fitted with ultrasonic sensors. In: 2020 IEEE 10th International Conference on Intelligent Systems (IS), pp. 211–216. IEEE, Bulgaria (2020)

    Google Scholar 

  15. Sanders, D.A., Gegov, A., Haddad, M., Ikwan, F., Wiltshire, D., Tan, Y.C.: A rule-based expert system to decide on direction and speed of a powered Wheelchair. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2018. AISC, vol. 868, pp. 822–838. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01054-6_57

    Chapter  Google Scholar 

  16. Haddad, M., Sanders, D., Ikwan, F., Thabet, M., Langner, M., Gegov, A.: Intelligent HMI and control for steering a powered wheelchair using a Raspberry Pi microcomputer. In 2020 IEEE 10th International Conference on Intelligent Systems (IS), pp. 223–228. IEEE, Bulgaria (2020)

    Google Scholar 

  17. Haddad, M., et al.: Intelligent control of the steering for a powered wheelchair using a microcomputer. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2020. AISC, vol. 1252, pp. 594–603. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55190-2_44

    Chapter  Google Scholar 

  18. Haddad, M., Sanders, D., Tewkesbury, G., Langner, M.: A novel collision avoidance system for steering a powered wheelchair using deep learning architecture. In: 24th IEEE International Conference on Intelligent Transportation - ITSC2021. IEEE (2021, submitted)

    Google Scholar 

  19. Haddad, M., Sanders, D., Tewkesbury, G., Langner, M.: Novel approach for digitizing the scanning collision avoidance device detection range. In: 32nd IEEE Intelligent Vehicles Symposium, 2021. IEEE, Japan (2021, submitted)

    Google Scholar 

  20. Haddad, M., Sanders, D., Langner, M., Tewkesbury, G.: Novel approach to steer a powered wheelchair using image processing algorithm and raspberry Pi. In: 32nd IEEE Intelligent Vehicles Symposium, 2021. IEEE, Japan (2021, submitted)

    Google Scholar 

  21. Haddad, M., Sanders, D., Tewkesbury, G., Langner, M.: Using open source computer vision algorithms to drive a powered wheelchair. In: 24th IEEE International Conference on Intelligent Transportation - ITSC2021. IEEE (2021, submitted)

    Google Scholar 

  22. Haddad, M., Sanders, D., Langner, M., Tewkesbury, G.: Steering a powered wheelchair using a camera module and Python Imaging Library. In: 24th IEEE International Conference on Intelligent Transportation - ITSC2021. IEEE, USA (2021, submitted)

    Google Scholar 

  23. Lewis, C.: Simplicity in cognitive assistive technology: a framework and agenda for research. Univ. Access Inf. Soc. 5(4), 351–361 (2007)

    Article  Google Scholar 

  24. Spark Fun Homepage: https://www.sparkfun.com/products/8958#comment-4f864d34ce395f9161000000. Accessed 16 Nov 2020

  25. Haddad, M., Sanders, D., Langner, M., Tewkesbury, G.: One shot learning approach to identify drivers. In: SAI Intelligent Systems Conference, IntelliSys. Netherlands (2021, Accepted and in Press)

    Google Scholar 

Download references

Acknowledgment

This research was supported by an EPSRC EP/S005927/1 project titled “Using artificial intelligence to share control of a powered-wheelchair between a wheelchair user and an intelligent sensor system”. Investigators: Sanders, DA and Gegov, AE. Senior Researchers Haddad MJ and Langner MC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Haddad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haddad, M., Sanders, D., Tewkesbury, G., Langner, M., Simandjuntak, S. (2022). Intelligent User Interface to Control a Powered Wheelchair Using Infrared Sensors. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-82193-7_43

Download citation

Publish with us

Policies and ethics

Navigation