• 997 Accesses

Abstract

In this chapter, we consider a nonlocal peridynamic theory proposed by Silling (J Mech Phys Solids 48:175–209, 2000) where the equilibrium of a material point is achieved by a summation of internal forces produced by surrounding points over finite distance (called a horizon). A simplified version being derived from this approach is the so-called bond-based approach, in which interactions only occur between pairs of material points within a horizon. One defines linear admissibility condition and angular admissibility condition, isotropy property. Definitions of the microelastic material, pairwise potential function, and peridynamic stress are presented. Volumetric boundary conditions are defined, and the linearized microelastic model is considered. Damage is introduced by permitting damaged bonds to break irreversibly by bond removing if the bond stretch exceeds a critical stretch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguiar AR, Fosdick R, (2014) A constitutive model for a linearly elastic peridynamic body Mathematics and Mechanics of Solids, 19:502–523

    Google Scholar 

  2. Askari E, Bobaru F, Lehoucq RB, Parks ML, Silling SA, Weckner O (2009) Peridynamics for multiscale materials modeling. Journal of Physics: Conference Series, 125:012078

    Google Scholar 

  3. Askari E, Xu J, Silling SA (2006) Peridynamic analysis of damage and failure in composites. 44th AIAA Aerospace Sciences Meeting and Exhibition, AIAA 2006–88, Reno, NV, 1–12

    Google Scholar 

  4. Beckmann R, Mella R, Wenman MR (2013) Mesh and timestep sensitivity of fracture from thermal strains using peridynamics implemented in Abaqus. Comput. Methods Appl. Mech. Engrg., 263:71–

    Google Scholar 

  5. Bobaru F, Foster J, Geubelle P, Silling S. (Editors) (2016) Handbook of Peridynamic Modeling, CRC Press, Boca Raton, FL.

    Google Scholar 

  6. Bobaru F, Yang M, Alves LF, Silling SA, Askari A, Xu J (2009) Convergence, adaptive refinement, and scaling in 1d peridynamics. Int. J. Numerical Methods Engng, 77:852–877.

    Article  Google Scholar 

  7. Buryachenko VA (2017a) Effective properties of thermoperistatic random structure composites: some background principles. Math. Mech. of Solids., 22:366–1386

    Article  MathSciNet  Google Scholar 

  8. Dayal K, Bhattacharya K (2006) Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Physics Solids, 54:1811–1842

    Article  MathSciNet  Google Scholar 

  9. Decklever J, Spanos P (2016) Nanocomposite material properties estimation and fracture analysis via peridynamics and Monte Carlo simulation. Probabilistic Engineering Mechanics 44 , 77–88

    Article  Google Scholar 

  10. Du Q, Gunzburger M, Lehoucq RB, Zhou K (2013). Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J. Elast., 113:193–217.

    Article  MathSciNet  Google Scholar 

  11. Emmrich E, Weckner O (2006) The peridynamic equation of motion in non-local elasticity theory. In C. A. Mota Soares et al. (eds.), III European Conference on Computational Mechanics. Solids, Structures and Coupled Problems in Engineering. Springer, Dordrecht

    Google Scholar 

  12. Emmrich E, Weckner O (2007b) On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5:851–864

    Article  MathSciNet  Google Scholar 

  13. Fish J, Jiang T, Yuan Z (2012a) A staggered nonlocal multiscale model for a heterogeneous medium. Int. J. Numer. Meth. Engng, 91:142–157

    Article  Google Scholar 

  14. Gerstle W, Sau N, Silling SA (2005) Peridynamic modeling of plain and reinforced concrete structures. In. 18th Intern. Confer. on Structural Mechanics in Reactor Technology (SMiRT 18), Bei**g, China, number SMIRT18-B01-2, 54–68

    Google Scholar 

  15. Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract, 162:229–244

    Article  Google Scholar 

  16. Hu W, Ha YD, Bobaru F (2012b) Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput. Methods Appl. Mech. Engrg., 217–220:247–261

    Article  MathSciNet  Google Scholar 

  17. Hu W, Ha YD, Bobaru F, Silling SA (2012c) The formulation and computation of the nonlocal J-integral in bond-based peridynamics. Int. J. Fract., 176:195–206

    Article  Google Scholar 

  18. Javili A, Morasata R, Oterkus E (2019) Peridynamics review. Mathematics and Mechanics of Solids, 24:3714–3739

    Article  MathSciNet  Google Scholar 

  19. Kachanov LM (1958) On the time to rupture under creep conditions. Izv. AN SSSR, Ofd. Tekhn. Nauk. vol. 8:26–31 (in Russian) [Also available in Kachanov LM (1999) Rupture time under creep conditions. Int. J. Fracture vol. 97:1–18]

    Google Scholar 

  20. Kachanov LM (1986) Introduction to Continuum Damage Mechanics. Netherlands Maritinus Nijhoff Publishers, Springer

    Book  Google Scholar 

  21. Kilic B (2008) Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials. PhD Thesis, Dep. Mechan. Engng, The University of Arisona, 1–262

    Google Scholar 

  22. Kilic B, Madenci E (2009) Structural stability and failure analysis using peridynamic theory. Int. J. Non-Linear Mechanics, 44:8

    Article  Google Scholar 

  23. Krajcinovic D (1996) Damage Mechan. Elsevier, Amsterdam

    Google Scholar 

  24. Kunin IA (1966) Theory of elasticity with spatial dispersion. One-dimensional complex structure. Prikl. Mat. Mekh., 30:866–874 (In Russian. Engl Trunsl. J. Appli. Mathematics and Mechanics 30:1025–1034)

    Google Scholar 

  25. Kunin IA (1967) Inhomogeneous elastic medium with nonlocal interaction. Zhurn. Prikl. Mekhan. Tekhn. Fiziki, 8:60–66 (In Russian. Engl Transl. J. Appl. Mechan. Techn. Phys., 8:41–44)

    Google Scholar 

  26. Kunin IA (1983) Elastic Media with Microstructure. Springer-Verlag, Berlin, 2

    Google Scholar 

  27. Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids, 56:1566–1577

    Article  MathSciNet  Google Scholar 

  28. Macek RW, Silling SA (2007) Peridynamics via finite element analysis Finite Elements in Analysis and Design, 43:1169–1178

    Google Scholar 

  29. Madenci E, Oterkus E (2014) Peridynamic Theory and Its Applications.. Springer, NY

    Book  Google Scholar 

  30. Mikata Y (2012) Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod Int. J. Solids and Structures, 49:2887–2897

    Google Scholar 

  31. Pelech P (2019) The peridynamic stress tensors and the non-local to local passage, J. of Applied Math. and Mechanics, 99(6)::e201800010

    Google Scholar 

  32. Rabotnov YN (1959) A mechanism of a long time failure. In Creep problems in structural members, AN SSSR, 5–7, (In Russian)

    Google Scholar 

  33. Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Physics of Solids 48:175–209

    MathSciNet  MATH  Google Scholar 

  34. Silling S (2010) Linearized theory of peridynamic states. Journal of Elasticity, 99:85–111

    Article  MathSciNet  Google Scholar 

  35. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83:1526–1535

    Article  Google Scholar 

  36. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J. Elasticity, 88:151–184

    Article  MathSciNet  Google Scholar 

  37. Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory, J. Elasticity, 93:13–37

    Article  MathSciNet  Google Scholar 

  38. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv. Appl.Mech., 44:73–168

    Article  Google Scholar 

  39. Silling SA, Zimmermann M, Abeyaratne R (2003) Deformation of a peridynamic bar. J. Elasticity, 73:173–190

    Article  MathSciNet  Google Scholar 

  40. Voyiadjis GZ, Kattan PI (2012) Advances in Damage Mechanics: Metals and Metal Matrix Composites. Elsevier Science, Oxford, UK

    MATH  Google Scholar 

  41. Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J. Mech. Physics of Solids 53:705–728

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Buryachenko, V.A. (2022). Bond-Based Peridynamics. In: Local and Nonlocal Micromechanics of Heterogeneous Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-81784-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81784-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81783-1

  • Online ISBN: 978-3-030-81784-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation