Meniscus Biomechanics

  • Chapter
  • First Online:
Orthopaedic Biomechanics in Sports Medicine

Abstract

Meniscal tears are common injuries in sports and their surgical treatment is one of the most performed procedures in orthopaedic surgery. The comprehension of the normal and pathological biomechanics of meniscus is mandatory to fully address this kind of injury and restore the native behaviour of the knee joint. This chapter provides an overview of the normal meniscus biomechanics, followed by a description of the main mechanical features and consequences of meniscal tears and treatment choices. In particular, in the first part the authors analysed the literature available about the effects of meniscus status on the tibiofemoral contact area and pressure, while in the second part the role of different meniscal status in knee kinematics was described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 126.59
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bloecker K, Englund M, Wirth W, Hudelmaier M, Burgkart R, Frobell RB, et al. Revision 1 size and position of the healthy meniscus, and its correlation with sex, height, weight, and bone area- a cross-sectional study. BMC Musculoskelet Disord. 2011;12:248.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am. 1983;65(4):538–47.

    Article  CAS  PubMed  Google Scholar 

  3. McDermott ID, Sharifi F, Bull AM, Gupte CM, Thomas RW, Amis AA. An anatomical study of meniscal allograft sizing. Knee Surg Sports Traumatol Arthrosc. 2004;12(2):130–5.

    Article  CAS  PubMed  Google Scholar 

  4. Beeler S, Vlachopoulos L, Jud L, Sutter R, Fürnstahl P, Fucentese SF. Contralateral MRI scan can be used reliably for three-dimensional meniscus sizing - retrospective analysis of 160 healthy menisci. Knee. 2019;26(5):954–61.

    Article  PubMed  Google Scholar 

  5. Proffen BL, McElfresh M, Fleming BC, Murray MM. A comparative anatomical study of the human knee and six animal species. Knee. 2012;19(4):493–9.

    Article  PubMed  Google Scholar 

  6. Halewood C, Masouros S, Amis AA. Structure and function of the menisci. In: Getgood A, Spalding T, Cole B, Gersoff W, Verdonk P, editors. Meniscal allograft transplantation a comprehensive review. Guilford: DJO publications; 2015. p. 19–33.

    Google Scholar 

  7. Moyer JT, Abraham AC, Haut Donahue TL. Nanoindentation of human meniscal surfaces. J Biomech. 2012;45(13):2230–5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Joshi MD, Suh JK, Marui T, Woo SL. Interspecies variation of compressive biomechanical properties of the meniscus. J Biomed Mater Res. 1995;29(7):823–8.

    Article  CAS  PubMed  Google Scholar 

  9. Sweigart MA, Zhu CF, Burt DM, DeHoll PD, Agrawal CM, Clanton TO, et al. Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann Biomed Eng. 2004;32(11):1569–79.

    Article  CAS  PubMed  Google Scholar 

  10. Kopf S, Colvin AC, Muriuki M, Zhang X, Harner CD. Meniscal root suturing techniques: implications for root fixation. Am J Sports Med. 2011;39(10):2141–6.

    Article  PubMed  Google Scholar 

  11. Ellman MB, LaPrade CM, Smith SD, Rasmussen MT, Engebretsen L, Wijdicks CA, et al. Structural properties of the meniscal roots. Am J Sports Med. 2014;42(8):1881–7.

    Article  PubMed  Google Scholar 

  12. Feucht MJ, Grande E, Brunhuber J, Burgkart R, Imhoff AB, Braun S. Biomechanical evaluation of different suture techniques for arthroscopic transtibial pull-out repair of posterior medial meniscus root tears. Am J Sports Med. 2013;41(12):2784–90.

    Article  PubMed  Google Scholar 

  13. Gupte CM, Bull AM, Thomas RD, Amis AA. The meniscofemoral ligaments: secondary restraints to the posterior drawer. Analysis of anteroposterior and rotary laxity in the intact and posterior-cruciate-deficient knee. J Bone Joint Surg Br. 2003;85(5):765–73.

    Article  PubMed  Google Scholar 

  14. Robinson JR, Bull AM, Thomas RR, Amis AA. The role of the medial collateral ligament and posteromedial capsule in controlling knee laxity. Am J Sports Med. 2006;34(11):1815–23.

    Article  PubMed  Google Scholar 

  15. Poh SY, Yew KS, Wong PL, Koh SB, Chia SL, Fook-Chong S, et al. Role of the anterior intermeniscal ligament in tibiofemoral contact mechanics during axial joint loading. Knee. 2012;19(2):135–9.

    Article  PubMed  Google Scholar 

  16. Martens TA, Hull ML, Howell SM. An in vitro osteotomy method to expose the medial compartment of the human knee. J Biomech Eng. 1997;119(4):379–85.

    Article  CAS  PubMed  Google Scholar 

  17. Natsis K, Paraskevas G, Anastasopoulos N, Papamitsou T, Sioga A. Meniscofibular ligament: morphology and functional significance of a relatively unknown anatomical structure. Anat Res Int. 2012;2012:214784.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bourne RB, Finlay JB, Papadopoulos P, Andreae P. The effect of medial meniscectomy on strain distribution in the proximal part of the tibia. J Bone Joint Surg Am. 1984;66(9):1431–7.

    Article  CAS  PubMed  Google Scholar 

  19. Walker PS, Hajek JV. The load-bearing area in the knee joint. J Biomech. 1972;5(6):581–9.

    Article  CAS  PubMed  Google Scholar 

  20. Krause WR, Pope MH, Johnson RJ, Wilder DG. Mechanical changes in the knee after meniscectomy. J Bone Joint Surg Am. 1976;58(5):599–604.

    Article  CAS  PubMed  Google Scholar 

  21. Jones RS, Keene GC, Learmonth DJ, Bickerstaff D, Nawana NS, Costi JJ, et al. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin Biomech (Bristol, Avon). 1996;11(5):295–300.

    Article  Google Scholar 

  22. Halewood C, Amis AA. Physiology: biomechanics. In: Hulet C, Pereira H, Peretti G, Denti M, editors. Surgery of the meniscus. Berlin: Springer; 2016. p. 35–45.

    Chapter  Google Scholar 

  23. Kawahara Y, Uetani M, Fuchi K, Eguchi H, Hayashi K. MR assessment of movement and morphologic change in the menisci during knee flexion. Acta Radiol. 1999;40(6):610–4.

    Article  CAS  PubMed  Google Scholar 

  24. Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM. Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br. 1999;81(1):37–41.

    Article  CAS  PubMed  Google Scholar 

  25. Masouros SD, McDermott ID, Amis AA, Bull AM. Biomechanics of the meniscus-meniscal ligament construct of the knee. Knee Surg Sports Traumatol Arthrosc. 2008;16(12):1121–32.

    Article  CAS  PubMed  Google Scholar 

  26. Campbell SE, Sanders TG, Morrison WB. MR imaging of meniscal cysts: incidence, location, and clinical significance. AJR Am J Roentgenol. 2001;177(2):409–13.

    Article  CAS  PubMed  Google Scholar 

  27. Drosos GI, Pozo JL. The causes and mechanisms of meniscal injuries in the sporting and non-sporting environment in an unselected population. Knee. 2004;11(2):143–9.

    Article  CAS  PubMed  Google Scholar 

  28. Yao J, Lancianese SL, Hovinga KR, Lee J, Lerner AL. Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion. J Orthop Res. 2008;26(5):673–84.

    Article  PubMed  Google Scholar 

  29. Doral MN, Bilge O, Huri G, Turhan E, Verdonk R. Modern treatment of meniscal tears. EFORT Open Rev. 2018;3(5):260–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Snoeker BA, Bakker EW, Kegel CA, Lucas C. Risk factors for meniscal tears: a systematic review including meta-analysis. J Orthop Sports Phys Ther. 2013;43(6):352–67.

    Article  PubMed  Google Scholar 

  31. Baker BE, Peckham AC, Pupparo F, Sanborn JC. Review of meniscal injury and associated sports. Am J Sports Med. 1985;13(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  32. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baker P, Reading I, Cooper C, Coggon D. Knee disorders in the general population and their relation to occupation. Occup Environ Med. 2003;60(10):794–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frizziero A, Ferrari R, Giannotti E, Ferroni C, Poli P, Masiero S. The meniscus tear. State of the art of rehabilitation protocols related to surgical procedures. Muscles Ligaments Tendons J. 2012;2(4):295–301.

    PubMed  Google Scholar 

  35. Pereira H, Varatojo R, Sevivas N, Serratosa L, Ripoll P, Oliveira J, et al. Physiopathology of the Meniscal Lesions. In: Hulet C., Pereira H, Peretti G, Denti M. Surgery of the Meniscus. Berlin: Springer; 2016., editor. Surgery of the Meniscus: Springer; 2016. p. 47–61.

    Google Scholar 

  36. Shelbourne KD, Nitz PA. The O'Donoghue triad revisited. Combined knee injuries involving anterior cruciate and medial collateral ligament tears. Am J Sports Med. 1991;19(5):474–7.

    Article  CAS  PubMed  Google Scholar 

  37. Anderson AF, Irrgang JJ, Dunn W, Beaufils P, Cohen M, Cole BJ, et al. Interobserver reliability of the International Society of Arthroscopy, knee surgery and Orthopaedic sports medicine (ISAKOS) classification of meniscal tears. Am J Sports Med. 2011;39(5):926–32.

    Article  PubMed  Google Scholar 

  38. Duchman KR, Westermann RW, Spindler KP, Reinke EK, Huston LJ, Amendola A, et al. The fate of meniscus tears left in situ at the time of anterior cruciate ligament reconstruction: a 6-year follow-up study from the MOON cohort. Am J Sports Med. 2015;43(11):2688–95.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shelbourne KD, Heinrich J. The long-term evaluation of lateral meniscus tears left in situ at the time of anterior cruciate ligament reconstruction. Arthroscopy. 2004;20(4):346–51.

    Article  PubMed  Google Scholar 

  40. Yagishita K, Muneta T, Ogiuchi T, Sekiya I, Shinomiya K. Healing potential of meniscal tears without repair in knees with anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32(8):1953–61.

    Article  PubMed  Google Scholar 

  41. Weiss CB, Lundberg M, Hamberg P, DeHaven KE, Gillquist J. Non-operative treatment of meniscal tears. J Bone Joint Surg Am. 1989;71(6):811–22.

    Article  CAS  PubMed  Google Scholar 

  42. Fitzgibbons RE, Shelbourne KD. "aggressive" nontreatment of lateral meniscal tears seen during anterior cruciate ligament reconstruction. Am J Sports Med. 1995;23(2):156–9.

    Article  CAS  PubMed  Google Scholar 

  43. McDermott ID, Amis AA. The consequences of meniscectomy. J Bone Joint Surg Br. 2006;88(12):1549–56.

    Article  CAS  PubMed  Google Scholar 

  44. Hoser C, Fink C, Brown C, Reichkendler M, Hackl W, Bartlett J. Long-term results of arthroscopic partial lateral meniscectomy in knees without associated damage. J Bone Joint Surg Br. 2001;83(4):513–6.

    Article  CAS  PubMed  Google Scholar 

  45. Bedi A, Kelly N, Baad M, Fox AJ, Ma Y, Warren RF, et al. Dynamic contact mechanics of radial tears of the lateral meniscus: implications for treatment. Arthroscopy. 2012;28(3):372–81.

    Article  PubMed  Google Scholar 

  46. Perez-Blanca A, Espejo-Baena A, Amat Trujillo D, Prado Nóvoa M, Espejo-Reina A, Quintero López C, et al. Comparative biomechanical study on contact alterations after lateral meniscus posterior root avulsion, Transosseous reinsertion, and Total meniscectomy. Arthroscopy. 2016;32(4):624–33.

    Article  PubMed  Google Scholar 

  47. LaPrade CM, Jansson KS, Dornan G, Smith SD, Wijdicks CA, LaPrade RF. Altered tibiofemoral contact mechanics due to lateral meniscus posterior horn root avulsions and radial tears can be restored with in situ pull-out suture repairs. J Bone Joint Surg Am. 2014;96(6):471–9.

    Article  PubMed  Google Scholar 

  48. Padalecki JR, Jansson KS, Smith SD, Dornan GJ, Pierce CM, Wijdicks CA, et al. Biomechanical consequences of a complete radial tear adjacent to the medial meniscus posterior root attachment site: in situ pull-out repair restores derangement of joint mechanics. Am J Sports Med. 2014;42(3):699–707.

    Article  PubMed  Google Scholar 

  49. Zhang K, Li L, Yang L, Shi J, Zhu L, Liang H, et al. Effect of degenerative and radial tears of the meniscus and resultant meniscectomy on the knee joint: a finite element analysis. J Orthop Translat. 2019;18:20–31.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Naendrup JH, Pfeiffer TR, Chan C, Nagai K, Novaretti JV, Sheean AJ, et al. Effect of meniscal ramp lesion repair on knee kinematics, bony contact forces, and in situ forces in the anterior cruciate ligament. Am J Sports Med. 2019;47(13):3195–202.

    Article  PubMed  Google Scholar 

  51. Liu X, Feng H, Zhang H, Hong L, Wang XS, Zhang J. Arthroscopic prevalence of ramp lesion in 868 patients with anterior cruciate ligament injury. Am J Sports Med. 2011;39(4):832–7.

    Article  PubMed  Google Scholar 

  52. Stephen JM, Halewood C, Kittl C, Bollen SR, Williams A, Amis AA. Posteromedial Meniscocapsular lesions increase tibiofemoral joint laxity with anterior cruciate ligament deficiency, and their repair reduces laxity. Am J Sports Med. 2016;44(2):400–8.

    Article  PubMed  Google Scholar 

  53. Denti M, Espregueira-Mendes J, Pereira H, Raoulis V, Hantes M. Traumatic meniscal lesions. In: Hulet C, Pereira H, Peretti G, Denti M, editors. Surgery of the meniscus. Berlin: Springer; 2016. p. 67–78.

    Chapter  Google Scholar 

  54. Logan CA, Aman ZS, Kemler BR, Storaci HW, Dornan GJ, LaPrade RF. Influence of medial meniscus bucket-handle repair in setting of anterior cruciate ligament reconstruction on tibiofemoral contact mechanics: a biomechanical study. Arthroscopy. 2019;35(8):2412–20.

    Article  PubMed  Google Scholar 

  55. Abram SGF, Judge A, Beard DJ, Wilson HA, Price AJ. Temporal trends and regional variation in the rate of arthroscopic knee surgery in England: analysis of over 1.7 million procedures between 1997 and 2017. Has practice changed in response to new evidence? Br J Sports Med. 2019;53(24):1533–8.

    Article  PubMed  Google Scholar 

  56. Baratz ME, Fu FH, Mengato R. Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am J Sports Med. 1986;14(4):270–5.

    Article  CAS  PubMed  Google Scholar 

  57. Roos H, Laurén M, Adalberth T, Roos EM, Jonsson K, Lohmander LS. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum. 1998;41(4):687–93.

    Article  CAS  PubMed  Google Scholar 

  58. Zaffagnini S, Marcheggiani Muccioli GM, Grassi A. Roberti di Sarsina T, Raggi F, Signorelli C, et al. over-the-top ACL reconstruction plus extra-articular lateral Tenodesis with hamstring tendon grafts: prospective evaluation with 20-year minimum follow-up. Am J Sports Med. 2017;45(14):3233–42.

    Article  PubMed  Google Scholar 

  59. Kim JG, Lee YS, Bae TS, Ha JK, Lee DH, Kim YJ, et al. Tibiofemoral contact mechanics following posterior root of medial meniscus tear, repair, meniscectomy, and allograft transplantation. Knee Surg Sports Traumatol Arthrosc. 2013;21(9):2121–5.

    Article  PubMed  Google Scholar 

  60. Ihn JC, Kim SJ, Park IH. In vitro study of contact area and pressure distribution in the human knee after partial and total meniscectomy. Int Orthop. 1993;17(4):214–8.

    Article  CAS  PubMed  Google Scholar 

  61. Lee SJ, Aadalen KJ, Malaviya P, Lorenz EP, Hayden JK, Farr J, et al. Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med. 2006;34(8):1334–44.

    Article  PubMed  Google Scholar 

  62. Burke DL AA, Miller J A biomechanical study of partial and total medial meniscectomy of the knee. Trans OrthopRes Soc. 1978;91(3).

    Google Scholar 

  63. Bae JY, Park KS, Seon JK, Kwak DS, Jeon I, Song EK. Biomechanical analysis of the effects of medial meniscectomy on degenerative osteoarthritis. Med Biol Eng Comput. 2012;50(1):53–60.

    Article  PubMed  Google Scholar 

  64. Stärke C, Kopf S, Gröbel KH, Becker R. The effect of a nonanatomic repair of the meniscal horn attachment on meniscal tension: a biomechanical study. Arthroscopy. 2010;26(3):358–65.

    Article  PubMed  Google Scholar 

  65. Stone KR, Rodkey WG, Webber R, McKinney L, Steadman JR. Meniscal regeneration with copolymeric collagen scaffolds. In vitro and in vivo studies evaluated clinically, histologically, and biochemically. Am J Sports Med. 1992;20(2):104–11.

    Article  CAS  PubMed  Google Scholar 

  66. Maher SA, Rodeo SA, Doty SB, Brophy R, Potter H, Foo LF, et al. Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy. 2010;26(11):1510–9.

    Article  PubMed  Google Scholar 

  67. Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N, Bruni D, Giordano G, Ravazzolo G, et al. Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10-year follow-up study. Am J Sports Med. 2011;39(5):977–85.

    Article  PubMed  Google Scholar 

  68. Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs EL. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med. 2011;39(4):774–82.

    Article  PubMed  Google Scholar 

  69. Seitz AM, Dürselen L. Biomechanical considerations are crucial for the success of tendon and meniscus allograft integration-a systematic review. Knee Surg Sports Traumatol Arthrosc. 2019;27(6):1708–16.

    Article  PubMed  Google Scholar 

  70. McDermott ID, Lie DT, Edwards A, Bull AM, Amis AA. The effects of lateral meniscal allograft transplantation techniques on tibio-femoral contact pressures. Knee Surg Sports Traumatol Arthrosc. 2008;16(6):553–60.

    Article  PubMed  Google Scholar 

  71. Tachibana Y, Mae T, Fujie H, Shino K, Ohori T, Yoshikawa H, et al. Effect of radial meniscal tear on in situ forces of meniscus and tibiofemoral relationship. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):355–61.

    Article  PubMed  Google Scholar 

  72. Novaretti JV, Lian J, Patel NK, Chan CK, Cohen M, Musahl V, et al. Partial lateral meniscectomy affects knee stability even in anterior cruciate ligament-intact knees. J Bone Joint Surg Am. 2020;102(7):567–73.

    Article  PubMed  Google Scholar 

  73. Zaffagnini S, Di Paolo S, Stefanelli F, Dal Fabbro G, Macchiarola L, Lucidi GA, et al. The biomechanical role of meniscal allograft transplantation and preliminary in-vivo kinematic evaluation. J Exp Orthop. 2019;6(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res. 2000;18(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  75. Levy IM, Torzilli PA, Warren RF. The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am. 1982;64(6):883–8.

    Article  CAS  PubMed  Google Scholar 

  76. Grassi A, Dal Fabbro G, Di Paolo S, Stefanelli F, Macchiarola L, Lucidi GA, et al. Medial and lateral meniscus have a different role in kinematics of the ACL-deficient knee: a systematic review. Journal of ISAKOS: Joint Disorders & Orthopaedic Sports Medicine. 2019;4(5):233–41.

    Article  Google Scholar 

  77. Ahn JH, Bae TS, Kang KS, Kang SY, Lee SH. Longitudinal tear of the medial meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly influences anterior stability. Am J Sports Med. 2011;39(10):2187–93.

    Article  PubMed  Google Scholar 

  78. McCulloch PC, Shybut TB, Isamaily SK, Durrani S, Gold JE, Noble PC, et al. The effect of progressive degrees of medial meniscal loss on stability after anterior cruciate ligament reconstruction. J Knee Surg. 2013;26(5):363–9.

    Article  PubMed  Google Scholar 

  79. Lorbach O, Kieb M, Herbort M, Weyers I, Raschke M, Engelhardt M. The influence of the medial meniscus in different conditions on anterior tibial translation in the anterior cruciate deficient knee. Int Orthop. 2015;39(4):681–7.

    Article  PubMed  Google Scholar 

  80. DePhillipo NN, Moatshe G, Brady A, Chahla J, Aman ZS, Dornan GJ, et al. Effect of Meniscocapsular and Meniscotibial lesions in ACL-deficient and ACL-reconstructed knees: a biomechanical study. Am J Sports Med. 2018;46(10):2422–31.

    Article  PubMed  Google Scholar 

  81. Mouton C, Magosch A, Pape D, Hoffmann A, Nührenbörger C, Seil R. Ramp lesions of the medial meniscus are associated with a higher grade of dynamic rotatory laxity in ACL-injured patients in comparison to patients with an isolated injury. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1023–8.

    Article  PubMed  Google Scholar 

  82. Shybut TB, Vega CE, Haddad J, Alexander JW, Gold JE, Noble PC, et al. Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament–deficient knee. Am J Sports Med. 2015;43(4):905–11.

    Article  PubMed  Google Scholar 

  83. Frank JM, Moatshe G, Brady AW, Dornan GJ, Coggins A, Muckenhirn KJ, et al. Lateral meniscus posterior root and Meniscofemoral ligaments as stabilizing structures in the ACL-deficient knee: a biomechanical study. Orthop J Sports Med. 2017;5(6):2325967117695756.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Forkel P, von Deimling C, Lacheta L, Imhoff FB, Foehr P, Willinger L, et al. Repair of the lateral posterior meniscal root improves stability in an ACL-deficient knee. Knee Surg Sports Traumatol Arthrosc. 2018;26(8):2302–9.

    Article  PubMed  Google Scholar 

  85. Musahl V, Citak M, O'Loughlin PF, Choi D, Bedi A, Pearle AD. The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med. 2010;38(8):1591–7.

    Article  PubMed  Google Scholar 

  86. Grassi A, Di Paolo S, Lucidi GA, Macchiarola L, Raggi F, Zaffagnini S. The contribution of partial meniscectomy to preoperative laxity and laxity after anatomic single-bundle anterior cruciate ligament reconstruction: in vivo kinematics with navigation. Am J Sports Med. 2019;47(13):3203–11.

    Article  PubMed  Google Scholar 

  87. Seon JK, Gadikota HR, Kozanek M, Oh LS, Gill TJ, Li G. The effect of anterior cruciate ligament reconstruction on kinematics of the knee with combined anterior cruciate ligament injury and subtotal medial meniscectomy: an in vitro robotic investigation. Arthroscopy. 2009;25(2):123–30.

    Article  PubMed  Google Scholar 

  88. Lorbach O, Kieb M, Domnick C, Herbort M, Weyers I, Raschke M, et al. Biomechanical evaluation of knee kinematics after anatomic single- and anatomic double-bundle ACL reconstructions with medial meniscal repair. Knee Surg Sports Traumatol Arthrosc. 2015;23(9):2734–41.

    Article  PubMed  Google Scholar 

  89. Tang X, Marshall B, Wang JH, Zhu J, Li J, Smolinski P, et al. Lateral meniscal posterior root repair with anterior cruciate ligament reconstruction better restores knee stability. Am J Sports Med. 2019;47(1):59–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to express special thanks to Ms. Silvia Bassini for the pictures and graphic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Dal Fabbro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grassi, A. et al. (2021). Meniscus Biomechanics. In: Koh, J., Zaffagnini, S., Kuroda, R., Longo, U.G., Amirouche, F. (eds) Orthopaedic Biomechanics in Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-81549-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81549-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81548-6

  • Online ISBN: 978-3-030-81549-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation