A Particle-Evolving Method for Approximating the Optimal Transport Plan

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12829))

Included in the following conference series:

  • 2415 Accesses

Abstract

We propose an innovative algorithm that iteratively evolves a particle system to approximate the sample-wised Optimal Transport plan for given continuous probability densities. Our algorithm is proposed via the gradient flow of certain functional derived from the Entropy Transport Problem constrained on probability space, which can be understood as a relaxed Optimal Transport problem. We realize our computation by designing and evolving the corresponding interacting particle system. We present theoretical analysis as well as numerical verifications to our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    When \(\mu ,\nu \) are absolute continuous with respect to the Lebesgue measure on \(\mathbb {R}^d\), the optimizer of (1) is guaranteed to be unique.

  2. 2.

    In this paper, we choose the Radial Basis Function (RBF) as the kernel: \(K(x,\xi )=\exp (-\frac{|x-\xi |^2}{2\tau ^2})\).

  3. 3.

    Notice that we always use \(\nabla _x K\) to denote the partial derivative of K with respect to the first components.

  4. 4.

    Here \(\mathcal {N}(\mu ,\sigma ^2)\) denotes the Gaussian distribution with mean value \(\mu \) and variace \(\sigma ^2\).

References

  1. Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43(2), 904–924 (2011)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-7643-8722-8

  3. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  Google Scholar 

  4. Benamou, J.D., Froese, B.D., Oberman, A.M.: Numerical solution of the optimal transportation problem using the Monge-Ampère equation. J. Comput. Phys. 260, 107–126 (2014)

    Article  MathSciNet  Google Scholar 

  5. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  Google Scholar 

  6. Carrillo, J.A., Craig, K., Patacchini, F.S.: A blob method for diffusion. Calc. Var. Partial. Differ. Equ. 58(2), 53 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chen, C., Zhang, R., Wang, W., Li, B., Chen, L.: A unified particle-optimization framework for scalable Bayesian sampling. ar**v preprint ar**v:1805.11659 (2018)

  8. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)

    Google Scholar 

  9. Cuturi, M., Doucet, A.: Fast computation of Wasserstein barycenters. In: International Conference on Machine Learning, pp. 685–693. PMLR (2014)

    Google Scholar 

  10. **, S., Li, L., Liu, J.G.: Random batch methods (RBM) for interacting particle systems. J. Comput. Phys. 400, 108877 (2020)

    Article  MathSciNet  Google Scholar 

  11. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  Google Scholar 

  12. Kantorovich, L.: On translation of mass (in Russian), c r. Doklady. Acad. Sci. USSR 37, 199–201 (1942)

    Google Scholar 

  13. Korotin, A., Egiazarian, V., Asadulaev, A., Safin, A., Burnaev, E.: Wasserstein-2 generative networks. ar**v preprint ar**v:1909.13082 (2019)

  14. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  15. Li, W., Ryu, E.K., Osher, S., Yin, W., Gangbo, W.: A parallel method for earth mover’s distance. J. Sci. Comput. 75(1), 182–197 (2018)

    Article  MathSciNet  Google Scholar 

  16. Liero, M., Mielke, A., Savaré, G.: Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures. Invent. Math. 211(3), 969–1117 (2018)

    Article  MathSciNet  Google Scholar 

  17. Liu, S., Sun, H., Zha, H.: Approximating the optimal transport plan via particle-evolving method. ar** via input convex neural networks. In: International Conference on Machine Learning, pp. 6672–6681. PMLR (2020)

    Google Scholar 

  18. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris (1781)

    Google Scholar 

  19. Oberman, A.M., Ruan, Y.: An efficient linear programming method for optimal transportation. ar**v preprint ar**v:1509.03668 (2015)

  20. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  Google Scholar 

  21. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  22. Ruthotto, L., Osher, S.J., Li, W., Nurbekyan, L., Fung, S.W.: A machine learning framework for solving high-dimensional mean field game and mean field control problems. Proc. Natl. Acad. Sci. 117(17), 9183–9193 (2020)

    Article  MathSciNet  Google Scholar 

  23. Schmitzer, B.: A sparse multiscale algorithm for dense optimal transport. J. Math. Imaging Vis. 56(2), 238–259 (2016)

    Article  MathSciNet  Google Scholar 

  24. Seguy, V., Damodaran, B.B., Flamary, R., Courty, N., Rolet, A., Blondel, M.: Large-scale optimal transport and map** estimation. ar**v preprint ar**v:1711.02283 (2017)

  25. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71050-9

  26. Walsh III, J.D., Dieci, L.: General auction method for real-valued optimal transport. ar**v preprint ar**v:1705.06379 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Liu or Haodong Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Sun, H., Zha, H. (2021). A Particle-Evolving Method for Approximating the Optimal Transport Plan. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_94

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation