Control and Management of Active Buildings

  • Chapter
  • First Online:
Active Building Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

  • 448 Accesses

Abstract

The power network is becoming increasingly intermittent as the contribution from renewable energy generation rises. To maintain stability and functionality of the power network, storage of renewable energies and demand-side control techniques are required. Smart grids provide the communication infrastructure to accomplish this goal. Smart grid control originated from the idea that the demand-side of the power grid can shift or shed load to reduce the strain on the network, while also maintaining consumer satisfaction and other specialist requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Annaswamy, A. M., Malekpour, A. R., & Baros, S. (2016). Emerging research topics in control for smart infrastructures. Annual Reviews in Control, 42, 259–270.

    Article  Google Scholar 

  • Arnaboldi, L., Czekster, R. M., Morisset, C., & Metere, R. (2020). Modelling load-changing attacks in cyber-physical systems. Electronic Notes in Theoretical Computer Science, 353, 39–60.

    Article  Google Scholar 

  • Başar, T., & Olsder, G. J. (1998). Dynamic noncooperative game theory. Philadelphia: SIAM.

    Book  Google Scholar 

  • Bevrani, H. (2009). Robust power system frequency control. Berlin: Springer.

    Book  Google Scholar 

  • Boyd, S., Boyd, S. P., & Vandenberghe, L. (2004) Convex optimization. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Brunton, S. L., & Kutz, J. N. (2017). Data driven science & engineering - machine learning, dynamical systems, and control. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Camacho, E. F., & Bordons, C. (2007). Introduction to model predictive control. Berlin: Springer.

    Book  Google Scholar 

  • Curiel, I. (2013). Cooperative game theory and applications: Cooperative games arising from combinatorial optimization problems (vol. 16). Berlin: Springer.

    MATH  Google Scholar 

  • Demuth, H. (2004). Neural network toolbox documentation. NN with Matlab, p. 846.

    Google Scholar 

  • Drgoňa, J., Arroyo, J., Cupeiro Figueroa, I., Blum, D., Arendt, K., Kim, D., Ollé, E. P., Oravec, J., Wetter, M., Vrabie, D. L., & Helsen, L. (2020). All you need to know about model predictive control for buildings. Annual Reviews in Control, 50, 190–232.

    Article  MathSciNet  Google Scholar 

  • Energy Emergencies Executive Committee. (2019). GB power system disruption–9 August 2019. Department for Business, Energy & Industrial Strategy, Tech. Rep.

    Google Scholar 

  • Figueiredo, J., & Sá da Costa, J. (2012). A SCADA system for energy management in intelligent buildings. Energy and Buildings, 49, 85–98.

    Article  Google Scholar 

  • Franklin, G. F., Powell, J. D., Emami-Naeini, A., & Powell, J. D. (2002). Feedback control of dynamic systems (vol. 4). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Gasparyan, O. (2008). Linear and nonlinear multivariable feedback control: A classical approach. Hoboken: Wiley.

    Book  Google Scholar 

  • Hu, J., Yang, G., Kok, K., Xue, Y., & Bindner, H. W. (2017) Transactive control: A framework for operating power systems characterized by high penetration of distributed energy resources. Journal of Modern Power Systems and Clean Energy, 5, 451–464.

    Article  Google Scholar 

  • Khaled, N., & Pattel, B. (2018). Chapter 2 - theoretical foundation of MPC. In: N. Khaled & B. Pattel (Eds.) Practical design and application of model predictive control. Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Ławryńczuk, M. (2017). Nonlinear predictive control of a boiler-turbine unit: A state-space approach with successive on-line model linearisation and quadratic optimisation. ISA Transactions, 67, 476–495.

    Article  Google Scholar 

  • Ljung, L. (2010). Perspectives on system identification. Annual Reviews in Control, 34, 1–12.

    Article  Google Scholar 

  • Löfberg, J. (2012). Automatic robust convex programming. Optimization Methods and Software, 27(1), 115–129.

    Article  MathSciNet  Google Scholar 

  • Miao, L., Wei, G., Fang, X., & Risheng, J. (2015). The strategy of the voltage control in smart grid based on modern control method and FPGA. In: 2015 34th Chinese Control Conference (CCC).

    Google Scholar 

  • National Grid. (2020). The grid code. National Grid, Tech. Rep.

    Google Scholar 

  • Nazir, S., Patel, S., & Patel, D. (2017). Assessing and augmenting SCADA cyber security: A survey of techniques. Computers & Security, 70, 436–454.

    Article  Google Scholar 

  • Rathore, M.M., Ahmad, A., Paul, A., & Rho, S. (2016) Urban planning and building smart cities based on the Internet of Things using big data analytics. Computer Networks, 101, 63–80.

    Article  Google Scholar 

  • Reynolds, J. (2019). Real-time and semantic energy management across buildings in a district configuration. Ph.D. Dissertation, Cardiff University.

    Google Scholar 

  • Roche, R., Lauri, F., Blunier, B., Miraoui, A., & Koukam, A. (2013). Multi-agent technology for power system control. London: Springer.

    Book  Google Scholar 

  • Roughgarden, T. (2010). Algorithmic game theory. Communications of the ACM, 53(7):78–86.

    Article  Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.

    Article  Google Scholar 

  • Saad, W., Han, Z., Poor, H. V., & Başar, T. (2012). Game-theoretic methods for the smart grid: An overview of microgrid systems, demand-side management, and smart grid communications. IEEE Signal Processing Magazine, 29(5), 86–105.

    Article  Google Scholar 

  • Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., & Hassabis, D. (2017). Mastering the game of go without human knowledge. Nature, 550(7676): 354–359.

    Article  Google Scholar 

  • Stark, C., Thompson, M., Andrew, T., Beasley, G., Bellamy, O., Budden, P., et al. (2019). Net Zero: The UK’s contribution to stop** global warming.

    Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (vol. 135). Cambridge: MIT Press.

    MATH  Google Scholar 

  • Vezzoli, C., Ceschin, F., Osanjo, L., M’Rithaa, M. K., Moalosi, R., Nakazibwe, V., & Diehl, J. C. (2018). Designing sustainable energy for all: sustainable product-service system design applied to distributed renewable energy. Springer Nature.

    Google Scholar 

  • Zhang, H., Zhou, J., Sun, Q., Guerrero, J. M., & Ma, D. (2017). Data-driven control for interlinked AC/DC microgrids via model-free adaptive control and dual-droop control. IEEE Transactions on Smart Grid, 8, 557–571.

    Article  Google Scholar 

  • Zonetti, D., Saoud, A., Girard, A., & Fribourg, L. (2019). A symbolic approach to voltage stability and power sharing in time-varying DC microgrids. In: 2019 18th European Control Conference (ECC).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Soudjani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wooding, B., Vahidinasab, V., Kazemi, M., Soudjani, S. (2022). Control and Management of Active Buildings. In: Vahidinasab, V., Mohammadi-Ivatloo, B. (eds) Active Building Energy Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-79742-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79742-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79741-6

  • Online ISBN: 978-3-030-79742-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation