Graph Exploration by Energy-Sharing Mobile Agents

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2021)

Abstract

We consider the problem of collective exploration of a known n-node edge-weighted graph by k mobile agents that have limited energy but are capable of energy transfers. The agents are initially placed at an arbitrary subset of nodes in the graph, and each agent has an initial, possibly different, amount of energy. The goal of the exploration problem is for every edge in the graph to be traversed by at least one agent. The amount of energy used by an agent to travel distance x is proportional to x. In our model, the agents can share energy when co-located: when two agents meet, one can transfer part of its energy to the other.

For an n-node path, we give an \(O(n+k)\) time algorithm that either finds an exploration strategy, or reports that one does not exist. For an n-node tree with \(\ell \) leaves, we give an \(O(n+ \ell k^2)\) algorithm that finds an exploration strategy if one exists. Finally, for the general graph case, we show that the problem of deciding if exploration is possible by energy-sharing agents is NP-hard, even for 3-regular graphs. In addition, we show that it is always possible to find an exploration strategy if the total energy of the agents is at least twice the total weight of the edges; moreover, this is asymptotically optimal.

Research supported in part by NSERC grants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  Google Scholar 

  2. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. Algorithmica 32(1), 123–143 (2002). https://doi.org/10.1007/s00453-001-0067-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Springer, Boston (2003). https://doi.org/10.1007/b100809

    Book  MATH  Google Scholar 

  4. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  Google Scholar 

  5. Baeza-Yates, R., Schott, R.: Parallel searching in the plane. Comput. Geom. 5(3), 143–154 (1995)

    Article  MathSciNet  Google Scholar 

  6. Bampas, E., Das, S., Dereniowski, D., Karousatou, C.: Collaborative delivery by energy-sharing low-power mobile robots. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 1–12. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_1

    Chapter  Google Scholar 

  7. Bärtschi, A.: Efficient delivery with mobile agents. Ph.D. thesis, ETH Zurich (2017)

    Google Scholar 

  8. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964). https://doi.org/10.1007/BF02759737

    Article  MathSciNet  MATH  Google Scholar 

  9. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Robot. 21(3), 376–386 (2005)

    Article  Google Scholar 

  10. Chalopin, J., Das, S., Kosowski, A.: Constructing a map of an anonymous graph: applications of universal sequences. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 119–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1_10

    Chapter  Google Scholar 

  11. Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 423–434. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_36

    Chapter  Google Scholar 

  12. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for mobile agents exchanging energy. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 275–288. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_18

    Chapter  MATH  Google Scholar 

  13. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Broadcast with energy-exchanging mobile agents distributed on a tree. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 209–225. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01325-7_20

    Chapter  Google Scholar 

  14. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Energy-optimal broadcast and exploration in a tree using mobile agents. Theor. Comput. Sci. 795, 362–374 (2019)

    Article  MathSciNet  Google Scholar 

  15. Czyzowicz, J., et al.: Graph exploration by energy-sharing mobile agents. arxiv.org/pdf/2102.13062 (2021)

  16. Czyzowicz, J., et al.: Energy consumption of group search on a line. In: Proceedings of ICALP, pp. 137:1–137:15 (2019)

    Google Scholar 

  17. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. In: Proceedings of FOCS, pp. 298–303. IEEE Computer Society (1991)

    Google Scholar 

  18. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32(3), 265–297 (1999)

    Article  MathSciNet  Google Scholar 

  19. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)

    Article  MathSciNet  Google Scholar 

  20. Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-8_5

    Chapter  Google Scholar 

  21. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Netw. Int. J. 48(3), 166–177 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Kleinberg, J.M.: On-line search in a simple polygon. In: Proceedings of SODA, pp. 8–15 (1994)

    Google Scholar 

  23. Koutsoupias, E., Papadimitriou, C., Yannakakis, M.: Searching a fixed graph. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 280–289. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0_135

    Chapter  Google Scholar 

  24. Kwan, M.-K.: Graphic programming using odd or even points. Acta Math. Sin. 10, 263–266 (1960). MR 0162630. Translated in Chinese Mathematics 1, 273–277 (1962)

    Google Scholar 

  25. Lovász, L.: Combinatorial Problems and Exercises. Elsevier, Amsterdam (1979)

    MATH  Google Scholar 

  26. Moussi, J.: Data communication problems using mobile agents exchanging energy. Ph.D. thesis, Université du Québec en Outaouais (2018)

    Google Scholar 

  27. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33(2), 281–295 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Kranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czyzowicz, J. et al. (2021). Graph Exploration by Energy-Sharing Mobile Agents. In: Jurdziński, T., Schmid, S. (eds) Structural Information and Communication Complexity. SIROCCO 2021. Lecture Notes in Computer Science(), vol 12810. Springer, Cham. https://doi.org/10.1007/978-3-030-79527-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79527-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79526-9

  • Online ISBN: 978-3-030-79527-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation