Scale-Covariant and Scale-Invariant Gaussian Derivative Networks

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12679))

Abstract

This paper presents a hybrid approach between scale-space theory and deep learning, where a deep learning architecture is constructed by coupling parameterized scale-space operations in cascade. By sharing the learnt parameters between multiple scale channels, and by using the transformation properties of the scale-space primitives under scaling transformations, the resulting network becomes provably scale covariant. By in addition performing max pooling over the multiple scale channels, a resulting network architecture for image classification also becomes provably scale invariant. We investigate the performance of such networks on the MNISTLargeScale dataset, which contains rescaled images from original MNIST over a factor of 4 concerning training data and over a factor of 16 concerning testing data. It is demonstrated that the resulting approach allows for scale generalization, enabling good performance for classifying patterns at scales not present in the training data.

The support from the Swedish Research Council (contract 2018-03586) is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jansson, Y., Lindeberg, T.: Exploring the ability of CNNs to generalise to previously unseen scales over wide scale ranges. In: International Conference on Pattern Recognition (ICPR 2020), pp. 1181–1188 (2021)

    Google Scholar 

  2. Lindeberg, T.: Provably scale-covariant continuous hierarchical networks based on scale-normalized differential expressions coupled in cascade. J. Math. Imaging Vis. 62, 120–148 (2020)

    Article  MathSciNet  Google Scholar 

  3. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30, 77–116 (1998)

    Google Scholar 

  4. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30, 117–154 (1998)

    Article  Google Scholar 

  5. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)

    Article  Google Scholar 

  6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  7. Bay, H., Ess, A., Tuytelaars, T., van Gool, L.: Speeded up robust features (SURF). CVIU 110, 346–359 (2008)

    Google Scholar 

  8. Lindeberg, T.: Image matching using generalized scale-space interest points. J. Math. Imaging Vis. 52, 3–36 (2015)

    Article  MathSciNet  Google Scholar 

  9. Fawzi, A., Frossard, P.: Manitest: are classifiers really invariant? In: British Machine Vision Conference (BMVC 2015) (2015)

    Google Scholar 

  10. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection – SNIP. In: Proceedings Computer Vision and Pattern Recognition (CVPR 2018), pp. 3578–3587 (2018)

    Google Scholar 

  11. Xu, Y., **ao, T., Zhang, J., Yang, K., Zhang, Z.: Scale-invariant convolutional neural networks. ar**v preprint ar**v:1411.6369 (2014)

  12. Kanazawa, A., Sharma, A., Jacobs, D.W.: Locally scale-invariant convolutional neural networks. ar**v preprint ar**v:1412.5104 (2014)

  13. Marcos, D., Kellenberger, B., Lobry, S., Tuia, D.: Scale equivariance in CNNs with vector fields. ar**v preprint ar**v:1807.11783 (2018)

  14. Ghosh, R., Gupta, A.K.: Scale steerable filters for locally scale-invariant convolutional neural networks. ar**v preprint ar**v:1906.03861 (2019)

  15. Worrall, D., Welling, M.: Deep scale-spaces: equivariance over scale. In: Advances in Neural Information Processing Systems, pp. 7366–7378 (2019)

    Google Scholar 

  16. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Proceedings of Neural Information Processing Systems (NIPS 2015), pp. 2017–2025 (2015)

    Google Scholar 

  17. Finnveden, L., Jansson, Y., Lindeberg, T.: Understanding when spatial transformer networks do not support invariance, and what to do about it. In: International Conference on Pattern Recognition (ICPR 2020), pp. 3427–3434 (2021)

    Google Scholar 

  18. Roux, N.L., Bengio, Y.: Continuous neural networks. In: Artificial Intelligence and Statistics (AISTATS 2007), vol. 2, pp. 404–411 (2007)

    Google Scholar 

  19. Shocher, A., Feinstein, B., Haim, N., Irani, M.: From discrete to continuous convolution layers. ar**v preprint ar**v:2006.11120 (2020)

  20. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962)

    Google Scholar 

  21. Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)

    Article  MathSciNet  Google Scholar 

  22. Koenderink, J.J., van Doorn, A.J.: Generic neighborhood operators. IEEE-TPAMI 14, 597–605 (1992)

    Article  Google Scholar 

  23. Lindeberg, T.: Scale-Space Theory in Computer Vision. Springer, New York (1993). 10.1007/978-1-4757-6465-9

    Google Scholar 

  24. Florack, L.M.J.: Image Structure. Springer, Dordrecht (1997). 10.1007/978-94-015-8845-4

    Google Scholar 

  25. ter Haar Romeny, B.: Front-End Vision and Multi-Scale Image Analysis. Springer, Dordrecht (2003). 10.1007/978-1-4020-8840-7

    Google Scholar 

  26. Lindeberg, T.: Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. Math. Imaging Vis. 40, 36–81 (2011)

    Article  MathSciNet  Google Scholar 

  27. Lindeberg, T.: A computational theory of visual receptive fields. Biol. Cybern. 107, 589–635 (2013)

    Article  MathSciNet  Google Scholar 

  28. Jacobsen, J.J., van Gemert, J., Lou, Z., Smeulders, A.W.M.: Structured receptive fields in CNNs. In: Proceedings of Computer Vision and Pattern Recognition (CVPR 2016), pp. 2610–2619 (2016)

    Google Scholar 

  29. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  30. Kingma, P.D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations (ICLR 2015) (2015)

    Google Scholar 

  31. Lindeberg, T.: Scale-space for discrete signals. IEEE-TPAMI 12, 234–254 (1990)

    Article  Google Scholar 

  32. Lindeberg, T.: Discrete derivative approximations with scale-space properties: a basis for low-level feature extraction. J. Math. Imaging Vis. 3, 349–376 (1993)

    Article  Google Scholar 

  33. Jansson, Y., Lindeberg, T.: MNISTLargeScaledataset. Zenodo (2020)

    Google Scholar 

  34. Loog, M., Li, Y., Tax, D.M.J.: Maximum membership scale selection. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 468–477. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02326-2_47

    Chapter  Google Scholar 

  35. Li, Y., Tax, D.M.J., Loog, M.: Scale selection for supervised image segmentation. Image Vis. Comput. 30, 991–1003 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Lindeberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lindeberg, T. (2021). Scale-Covariant and Scale-Invariant Gaussian Derivative Networks. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75549-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75548-5

  • Online ISBN: 978-3-030-75549-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation