Structure Characterizations and Molecular Dynamics Simulations of Melt, Glass, and Glass Fibers

  • Chapter
  • First Online:
Fiberglass Science and Technology

Abstract

Network structures of glasses and glass fibers are tailored by glass designers using various combinations of oxides or raw materials to achieve desirable properties for specific applications. It has been well accepted in the glass community that the glass network structures are affected not only by composition, but also melt history (melting temperature) and forming conditions. Unlocking local environments of the glass network will greatly contributes to new glass and fiber glass design meeting ever growing commercial applications for higher performance and better processing characteristics. Several state-of-the-art spectroscopic techniques have been successfully developed addressing the critical needs in understanding the complex glass network that has no periodic structures over an intermediate and long range. Two of the commonly used techniques are Raman spectroscopy (including confocal micro-Raman spectroscopy) and high-resolution magic angle spin nuclear magnetic resonance spectroscopy (MAS NMR) (Hawthorne, Spectroscopic methods in mineralogy and geology, reviews in mineralogy Vol 18, 1988; Mysen and Richet P, Developments Geochem 10, 2005, which will be a focus of discussions in Sect. 2.1 (Neuville et al.) and Sect. 2.2 (Charpentier), respectively. Both techniques have been recently applied to study glasses in a fiber form, which were created under high temperature and high shear rate (Li et al., Int J Appl Glass Sci 8:23–36, 2016). Besides, with the advancement in computer technology and atomistic computation modeling of amorphous or glassy materials, molecular dynamics simulations (MD) has been widely accepted as one of the critical methods to understand the structure and properties of oxide glasses and other amorphous materials (Charpentier et al., J Non-Cryst Solids 492:115–125, 2018; Massobrio et al., Molecular dynamics simulations of disordered materials—from network glasses to phase-change memory alloys, 2015) and its versatility will be reviewed in Sect. 2.3 (Du et al.). Finally, high-temperature differential scanning calorimetry (DSC) method will be introduced in Sect. 2.4 (Yue), which has been demonstrated to be a powerful tool for the characterization of glass fibers formed under a high shear rate and a very high-cooling rate close to 1 × 106 K/s, (Li et al., Int J Appl Glass Sci 8:23–36, 2016; Yue, J Non-Cryst Solids 345–346:523–527, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hawthorne FC, editor. Spectroscopic methods in mineralogy and geology, reviews in mineralogy Vol 18 miner. Chelsea, MI: Society of American Book Crafters; 1988.

    Google Scholar 

  2. Mysen BO, Richet P. Silicate glasses and melts: properties and structure. Dev Geochem 10. Amsterdam: Elsevier; 2005.

    Google Scholar 

  3. Li H, Charpentier T, Du JC, Vennam S. Composite reinforcement: recent development of continuous glass fibers. Int J Appl Glas Sci. 2016;8:23–36.

    Article  CAS  Google Scholar 

  4. Charpentier T, Ollier N, Li H. RE2O3-alkaline earth-aluminosilicate fiber glasses: studies of melt properties, crystallization, and the network structures. J Non-Cryst Solids. 2018;492:115–25.

    Article  CAS  Google Scholar 

  5. Massobrio C, Du JC, Bernasconi M, Salmon PS, editors. Molecular dynamics simulations of disordered materials – from network glasses to phase-change memory alloys. New York, NY: Springer; 2015.

    Google Scholar 

  6. Yue YZ. Experimental evidence for the existence of an ordered structure in a silicate liquid above its liquidus temperature. J Non-Cryst Solids. 2004;345–346:523–7.

    Article  CAS  Google Scholar 

  7. Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 1928;121:501–2.

    Article  CAS  Google Scholar 

  8. Landsberg G, Mandelstam L. A new occurrence in the light diffusion of crystals. Naturwissenschaften. 1928;16:557–8.

    CAS  Google Scholar 

  9. Cabannes J, Rocard Y. Les observations de Mr Raman sur le nouveau type de radiation secondaire. J Phys. 1928;10:32–4.

    Google Scholar 

  10. Rocard Y. Les nouvelles radiations diffusées. CR Acad Sci. 1928;190:1107–9.

    Google Scholar 

  11. Angel SM, Gomer NR, Sharma SK, McKay C. Remote Raman spectroscopy for planetary exploration: a review. Appl Spectrosc. 2012;66:137–50.

    Article  CAS  Google Scholar 

  12. Zhang X, Kirkwood WJ, Walz PM, Peltzer ET, Brewer PG. A review of advances in deep-ocean Raman spectroscopy. Appl Spectrosc. 2012;66:237–49.

    Article  CAS  Google Scholar 

  13. Tu Q, Chang C. Diagnostic applications of Raman spectroscopy. Nanomed Nanotechnol. 2012;8:545–58.

    Article  CAS  Google Scholar 

  14. Di Genova D, Hess K-U, Chevrel MO, Dingwell DB. Models for the estimation of Fe3+/Fetot ratio in terrestrial and extraterrestrial alkali- and iron-rich silicate glasses using Raman spectroscopy. Am Mineral. 2016;101:943–52.

    Article  Google Scholar 

  15. Hollaender A, Williams JW. The molecular scattering of light from solids. Plate glass. Phys Rev. 1929;34:380–1.

    Article  CAS  Google Scholar 

  16. Hollaender A, Williams JW. The molecular scattering of light from amorphous and crystalline solids. Phys Rev. 1931;38:1739–44.

    Article  CAS  Google Scholar 

  17. Warren BE. The diffraction of X-rays in glass. Phys Rev B. 1934;45:657–61.

    Article  CAS  Google Scholar 

  18. Warren BE. X-ray determination of the structure of glass. J Am Ceram Soc. 1934;17:249–54.

    Article  CAS  Google Scholar 

  19. Herzberg G. Molecular spectra and molecular structure. I Spectra of diatomic molecule. Princeton: Princeton Press; 1945.

    Google Scholar 

  20. Wilson EB, Decius JC, Cross PC. Molecular vibrations. New York, NY: McGraw-Hill; 1955.

    Google Scholar 

  21. Harris DC, Bertolucci MD. Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy. New York, NY: Oxford University Press; 1978.

    Google Scholar 

  22. Herzberg G. Molecular spectra and molecular structure. II Infrared and Raman spectra of polyatomic molecules. Princeton: Princeton Press; 1945.

    Google Scholar 

  23. Sherwood PMA. Vibrational spectroscopy of solids, 1. Cambridge: Cambridge University Press; 1972.

    Google Scholar 

  24. Lazarev AN. Vibrational spectra and structure in silicates. New York, NY: Consultant Bureau New-York; 1972.

    Google Scholar 

  25. Long DA. Raman spectroscopy. New York, NY: McGraw-Hill; 1977.

    Google Scholar 

  26. Long DA. The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Hoboken, NJ: John Wiley and Sons; 2002.

    Book  Google Scholar 

  27. Karr C. Infrared and Raman spectroscopy of lunar and terrestrial minerals. New York, NY: Academic; 1975.

    Google Scholar 

  28. Dubessy J, Caumon M-C, Rull F. Raman spectroscopy applied to earth sciences and cultural heritage. Euro Mineral Union 12. Aberystwyth: Cambrian Printers; 2012.

    Google Scholar 

  29. Nasdala L, Smith DC, Kaindl R, Ziemann MA. Raman spectroscopy: analytical perspectives in mineralogical research. Eur Miner Union Notes Mineral. 2004;6:196–259.

    Google Scholar 

  30. Das RS, Agrawal YK. Raman spectroscopy: recent advancements, techniques and applications. Vib Spectrosc. 2011;57:163–76.

    Article  CAS  Google Scholar 

  31. Neuville DR, Henderson GS, de Ligny D. Advances in Raman spectroscopy applied to earth and material sciences. In: Henderson GS, Neuville DR, Down B, editors. Spectroscopic methods in mineralogy and material sciences, Rev Mineral Geochem, vol. 78; 2014. p. 509–41.

    Chapter  Google Scholar 

  32. Ziegler LD. Hyper-Raman spectroscopy. J Raman Spectrosc. 1990;21:769–79.

    Article  CAS  Google Scholar 

  33. Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26:163–6.

    Article  CAS  Google Scholar 

  34. Jeanmarie DL, Van Duyne RP. Surface Raman spectro-electrochemistry, part 1: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem. 1977;84:120–7.

    Google Scholar 

  35. Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc. 1977;99:5215–7.

    Article  CAS  Google Scholar 

  36. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem. 2008;1:601–26.

    Article  CAS  Google Scholar 

  37. Cialla D, Marz A, Bohme R, Theil F, Weber K, Schmitt M, Popp J. Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem. 2012;403:27–54.

    Article  CAS  Google Scholar 

  38. Haidar I, Aubard J, Lévi G, Lau-Truong S, Mouton L, Neuville DR, Félidj N, Boubekeur-Lecaque L. Design of stable plasmonic dimers in solution: importance of nanorods aging and acidic medium. J Phys Chem C. 2015;119:23149–58.

    Article  CAS  Google Scholar 

  39. Haidar I, Levi G, Mouton L, Aubard J, Grand J, Lau Truong S, Neuville DR, Felidj N, Boubekeur-Lecaque L. Highly stable silica-coated gold nanorods dimers for solution-based SERS. Phys Chem Chem Phys. 2016;18:32272–80.

    Article  CAS  Google Scholar 

  40. Maker PD, Terhune RW. Study of optical effects due to an induced polarization third order in the electric field strength. Phys Rev. 1965;137(3A):801–18.

    Article  CAS  Google Scholar 

  41. Begley RF, Harvey AB, Byer RL. Coherent anti-stokes Raman spectroscopy. Appl Phys Lett. 1974;25(7):387–90.

    Article  CAS  Google Scholar 

  42. Cheng J-X. Coherent anti-stokes Raman scattering microscopy: instrumentation, theory, and applications. J Phys Chem B. 2004;108:827–40.

    Article  CAS  Google Scholar 

  43. Cabannes J, Rousset A. Les règles de polarisation des raies de Raman dans les liquides. Enoncés théoriques et vérifications expérimentales. CR Acad Sci. 1932;194:79–81.

    CAS  Google Scholar 

  44. Hibben JH. Raman spectra in inorganic chemistry. Chem Rev. 1933;13:345–478.

    Article  CAS  Google Scholar 

  45. Hibben JH. Raman spectra in organic chemistry. Chem Rev. 1936;18:1–231.

    Article  Google Scholar 

  46. Mulliken RS. Band spectra and chemistry. Chem Rev. 1929;6:503–45.

    Article  CAS  Google Scholar 

  47. Mulliken RS. Bonding of electrons and theory of valence. Chem Rev. 1933;11:347–88.

    Google Scholar 

  48. Villars DS. The energy levels and statistical weights of polyatomic molecules. Chem Rev. 1932;11:369–436.

    Article  CAS  Google Scholar 

  49. Gillet P, Barrat JA, Deloule E, Wadhwa W, Jambon A, Sautter V, Devouard B, Neuville DR, Benzerara K, Lesourd M. Aqueous alteration in the north West Africa 817 (NWA 817) Martian meteorite. Earth Planet Sci Lett. 2002;203:431–44.

    Article  CAS  Google Scholar 

  50. Thomas R. Determination of water concentrations of granite melt inclusion by confocal laser Raman microprobe spectroscopy. Am Mineral. 2000;85:868–72.

    Article  CAS  Google Scholar 

  51. Behrens H, Roux J, Neuville DR, Siemann M. Quantification of dissolved H2O in silicate glasses using Raman spectroscopy. Chem Geol. 2006;229:96–113.

    Article  CAS  Google Scholar 

  52. Hehlen B, Neuville DR. Raman response of network modifier cations in alumino-silicate glasses. J Phys Chem B. 2015;119:4093–8.

    Article  CAS  Google Scholar 

  53. Shuker R, Gammon RW. Raman-scattering selection-rule breaking and density of states in amorphous materials. Phys Rev Lett. 1970;25:222–5.

    Article  CAS  Google Scholar 

  54. Galeener FL, Sen PN. Theory for 1st-order vibrational-spectra of disordered solids. Phys Rev B. 1978;17:1928–33.

    Article  CAS  Google Scholar 

  55. Seifert F, Mysen BO, Virgo D. 3-dimensional network structure of quenched melts (glass) in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4. Am Mineral. 1982;67:696–717.

    CAS  Google Scholar 

  56. McMillan P. Structural studies of silicate glasses and melts – applications and limitations of Raman-spectroscopy. Am Mineral. 1984;69:622–44.

    CAS  Google Scholar 

  57. Neuville DR, Mysen BO. Role of aluminum in the silicate network: in-situ, high-temperature study of glasses and melts on the join SiO2-NaAlO2. Geochim Cosmochim Acta. 1996;60:1727–37.

    Article  CAS  Google Scholar 

  58. Hehlen B, Neuville DR. Non-network-former cations in oxide glasses spotted by Raman scattering. Phys Chem Chem Phys. 2020;22:12724–31.

    Article  CAS  Google Scholar 

  59. Mysen BO, Finger LW, Virgo D, Seifert FA. Curve-fitting of Raman spectra of silicate glasses. Am Mineral. 1982;67:686–95.

    CAS  Google Scholar 

  60. McMillan PF, Poe BT, Gillet P, Reynard B. A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature Raman spectroscopy. Geochim Cosmochim Acta. 1994;58:3653–64.

    Article  CAS  Google Scholar 

  61. Hass M. Temperature dependence of the Raman spectrum of vitreous silica. Solid State Commun. 1969;7:1069–71.

    Article  CAS  Google Scholar 

  62. Hass M. Raman spectra of vitreous silica, germania and sodium silicate glasses. J Phys Chem Solids. 1970;31:415–42.

    Article  CAS  Google Scholar 

  63. Mysen BO, Frantz JD. Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25-1475°C. Chem Geol. 1992;96:321–32.

    Article  CAS  Google Scholar 

  64. Mysen BO, Frantz JD. Structure and properties of alkali silicate melts a magmatic temperatures. Eur J Mineral. 1993;5:393–413.

    Article  CAS  Google Scholar 

  65. Mysen BO, Frantz JD. Silicate melts at magmatic temperatures:in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units. Contrib Mineral Petrol. 1994;117:1–14.

    Article  CAS  Google Scholar 

  66. Mysen BO, Frantz JD. Structure of haplobasaltic liquids atmagmatic temperatures:in-situ, high-temperature study of melts on the join Na2Si2O5-Na2(NaAl)2O5. Geochim Cosmochim Acta. 1994;58:1711–33.

    Article  CAS  Google Scholar 

  67. Neuville DR. Viscosity, structure and mixing in (ca, Na) silicate melts. Chem Geol. 2006;229:28–42.

    Article  CAS  Google Scholar 

  68. Le Losq C, Neuville DR, Moretti R, Roux J. Water quantification and speciation in silicate melt using Raman spectroscopy. Am Mineral. 2012;97:779–91.

    CAS  Google Scholar 

  69. Nasdala L, Brenker FE, Glinnemann J, Hofmeister W, Gasparik T, Harris JW, Stachel T, Reese I. Spectroscopic 2D-tomography: residual pressure and strain around mineral inclusions in diamonds. Eur J Mineral. 2003;15:931–5.

    Article  CAS  Google Scholar 

  70. Metrich N, Allard P, Aiuppa A, Bani P, Bertagnini P, Shinohara H, Parello F, Dimuro A, Garaebiti E, Belhadj O, Massare D. Magma and volatile supply to post-collapse volcanism and block resurgence in Siwi Caldera (Tanna Island, Vanuatu Arc). J Petrol. 2011;52:1077–105.

    Article  CAS  Google Scholar 

  71. Denisov VN, Mavrin BN, Podobedov VB, Sterin KE, Varshal BG. Law of conservation of momentum and rule of mutual exclusion for vibrational excitations in hyper-Raman and Raman spectra of glasses. J Non-Cryst Solids. 1984;64:195–210.

    Article  CAS  Google Scholar 

  72. Denisov VN, Mavrin BN, Podobedov YB. Hyper-Raman scattering by vibrational excitations in crystals, glasses and liquids. Phys Rep. 1987;151:1–92.

    Article  Google Scholar 

  73. Hehlen B, Courtens E, Vacher R, Yamanaka A, Kataoka M, Inoue K. Hyper-Raman scattering observation of the boson peak in vitreous silica. Phys Rev Lett. 2000;84:5355–8.

    Article  CAS  Google Scholar 

  74. Hehlen B, Courtens E, Yamanaka A, Inoue K. Nature of the boson peak of silica glasses from hyper-Raman scattering. J Non-Cryst Solids. 2002;307-310:87–91.

    Article  CAS  Google Scholar 

  75. Simon G, Hehlen B, Courtens E, Longueteau E, Vacher R. Hyper-Raman scattering from vitreous boron oxide: coherent enhancement of the boson peak. Phys Rev Lett. 2006;96:105502–6.

    Article  CAS  Google Scholar 

  76. Simon G, Hehlen B, Vacher R, Courtens E. Nature of the hyper-Raman active vibrations of lithium borate glasses. J Phys Condens Mater. 2008;20:155103–10.

    Article  CAS  Google Scholar 

  77. Matson DW, Sharma SK, Philpotts JA. The structure of high-silica alkali silicate glasses: a Raman spectroscopic investigation. J Non-Cryst Solids. 1983;58:323–52.

    Article  CAS  Google Scholar 

  78. McMillan PF. Vibrational spectroscopy in the mineral sciences. Rev Mineral Geochem. 1985;14:9–63.

    CAS  Google Scholar 

  79. McMillan PF, Piriou B. The structures and vibrational spectra of crystals and glasses in the silica-alumina system. J Non-Cryst Solids. 1982;53:279–98.

    Article  CAS  Google Scholar 

  80. McMillan P, Piriou B. Raman spectroscopy of calcium aluminate glasses and crystals. J Non-Cryst Solids. 1983;55:221–42.

    Article  CAS  Google Scholar 

  81. McMillan PF, Wolf GH, Poe BT. Vibrational spectroscopy of silicate liquids and glasses. Chem Geol. 1992;96:351–66.

    Article  CAS  Google Scholar 

  82. Mysen BO. Structure and properties of magmatic liquids:from haplobasalt to haploandesite. Geochim Cosmochim Acta. 1999;63:95–112.

    Article  CAS  Google Scholar 

  83. Mysen BO. Physics and chemistry of silicate glasses and melts. Eur J Mineral. 2003;15:781–802.

    Article  CAS  Google Scholar 

  84. Neuville DR, Cormier L, Massiot D. Role of aluminum in peraluminous region in the CAS system. Geochim Cosmochim Acta. 2004;68:5071–9.

    Article  CAS  Google Scholar 

  85. Neuville DR, Cormier L, Massiot D. Al speciation in calcium aluminosilicate glasses:a NMR and Raman spectroscopy. Chem Geol. 2006;229:173–85.

    Article  CAS  Google Scholar 

  86. Neuville DR, Cormier L, Montouillout V, Florian P, Millot F, Rifflet JC, Massiot D. Structure of mg- and mg/ca aluminosilicate glasses:27Al NMR and Raman spectroscopy investigations. Am Mineral. 2008;83:1721–31.

    Article  CAS  Google Scholar 

  87. Neuville DR, Henderson GS, Cormier L, Massiot D. Structure of CaO-Al2O3 crystal, glasses and liquids, using X-ray absorption at Al L and K edges and NMR spectroscopy. Am Mineral. 2010;95:1580–9.

    Article  CAS  Google Scholar 

  88. Lenoir M, Neuville DR, Malki M, Grandjean A. Volatilization kinetics of sulphur from borosilicate melts:a correlation between sulphur diffusion and melt viscosity. J Non-Cryst Solids. 2010;356:2722–7.

    Article  CAS  Google Scholar 

  89. Le Losq C, Neuville DR. Effect of K/Na mixing on the structure and rheology of tectosilicate silica-rich melts. Chem Geol. 2013;346:57–71.

    Article  CAS  Google Scholar 

  90. Kojitani H, Többens DM, Akaogi M. High-pressure Raman spectroscopy, vibrational mode calculation, and heat capacity calculation of calcium ferrite-type MgAl2O4 and CaAl2O4. Am Mineral. 2013;98:197–206.

    Article  CAS  Google Scholar 

  91. Le Losq C, Neuville DR, Florian P, Henderson GS, Massiot D. Role of Al3+ on rheology and nano-structural changes of sodium silicate and aluminosilicate glasses and melts. Geochim Cosmochim Acta. 2014;126:495–517.

    Article  CAS  Google Scholar 

  92. Le Losq C, Neuville DR, Florian P, Massiot D, Zhou Z, Chen W, Greaves N. Percolation channels: a universal idea to describe the atomic structure of glasses and melts. Sci Rep. 2017;7:16490. https://doi.org/10.1038/s41598-017-16741-3.

    Article  CAS  Google Scholar 

  93. Le Losq C, Berry AJ, Kendrick MA, Neuville DR, Hugh St C, O’Neill HC. Determination of the oxidation state of iron in basaltic glasses by Raman spectroscopy. Am Mineral. 2019;104:1032–42.

    Article  Google Scholar 

  94. Chryssikos GD, Kamitsos EI, Patsis AP, Bitsis MS, Karakassides MA. The devitrification of lithium metaborate:polymorphism and glass formation. J Non-Cryst Solids. 1990;126:42–51.

    Article  CAS  Google Scholar 

  95. Kamitsos EI, Karakassides MA, Chryssikos GD. Vibrational-spectra of magnesium-sodium-borate glasses. 1. Far-infrared investigation of the cation-site interactions. J Phys Chem. 1987;91:1067–73.

    Article  CAS  Google Scholar 

  96. Akagi R, Ohtori N, Umesaki N. Raman spectra of K2O–B2O3 glasses and melts. J Non-Cryst Solids. 2001;293(295):471–6.

    Article  Google Scholar 

  97. Maniu D, Iliescu T, Ardelean I, Cinta S, Tarcea N, Kiefer W. Raman study on B2O3-CaO glasses. J Mol Struct. 2003;651-653:485–8.

    Article  CAS  Google Scholar 

  98. Yano T, Kunimine N, Shibata S, Yamane M. Structural investigation of sodium borate glasses and melts by Raman spectroscopy. II. Conversion between BO4 and BO2O units at high temperature. J Non-Cryst Solids. 2003;321:147–56.

    Article  CAS  Google Scholar 

  99. Yano T, Kunimine N, Shibata S, Yamane M. Structural investigation of sodium borate glasses and melts by Raman spectroscopy. III Relation between the rearrangement of super-structures and the properties of the glass. J Non-Cryst Solids. 2003;321:157–68.

    Article  CAS  Google Scholar 

  100. Lenoir M, Grandjean A, Linard Y, Cochain B, Penelon B, Neuville DR. The influence of the Si, B substitution and of the nature of network modifying cations on the properties and structure of borosilicate glasses and melts. Chem Geol. 2008;256:316–25.

    Article  CAS  Google Scholar 

  101. Manara D, Grandjean A, Neuville DR. Advances in understanding the structure of borosilicate glasses: a Raman spectroscopy study. Am Mineral. 2009;94:777–84.

    Article  CAS  Google Scholar 

  102. Manara D, Grandjean A, Neuville DR. Structure of borosilicate glasses and melts: a revision of the Yun, Bray and Dell model. J Non-Cryst Solids. 2009;355:2528–32.

    Article  CAS  Google Scholar 

  103. Meera BN, Ramakrishna J. Raman spectral studies of borate glasses. J Non-Cryst Solids. 1993;159:1–16.

    Article  CAS  Google Scholar 

  104. Mysen BO, Virgo D, Scarfe CM. Relations between the anionic structure and viscosity of silicate melts – a Raman spectroscopic study. Am Mineral. 1980;65:690–710.

    CAS  Google Scholar 

  105. Mysen BO, Virgo D, Neumann E-R, Seifert FA. Redox equilibria and the structural states of ferric and ferrous iron in melts in the system CaO-MgO-SiO2-Fe-O: relationships between redox equilibria, melt structure and liquidus phase equilibria. Am Mineral. 1985;70:317–31.

    CAS  Google Scholar 

  106. Mysen BO, Carmichael ISE, Virgo D. A comparison of iron redox ratios in silicate glasses determined by wetchemical and 57Fe Mossbauer resonant absorption methods. Contrib Mineral Petrol. 1985;90:101–6.

    Article  CAS  Google Scholar 

  107. Magnien V, Neuville DR, Cormier L, Mysen BO, Richet P. Kinetics of iron oxidation in silicate melts: a preliminary XANES study. Chem Geol. 2004;213:253–63.

    Article  CAS  Google Scholar 

  108. Magnien V, Neuville DR, Cormier L, Roux J, Pinet O, Richet P. Kinetics of iron redox reactions: a high-temperature XANES and Raman spectroscopy study. J Nucl Mater. 2006;352:190–5.

    Article  CAS  Google Scholar 

  109. Roskosz M, Mysen BO, Cody GD. Dual speciation of nitrogen in silicate melts at high pressure and temperature: an experimental study. Geochim Cosmochim Acta. 2006;70:2902–18.

    Article  CAS  Google Scholar 

  110. Cochain B, Neuville DR, Henderson GS, McCammon C, Pinet O, Richet P. Iron content, redox state and structure of sodium borosilicate glasses: a Raman, Mössbauer and boron K-edge XANES spectroscopy study. J Am Ceram Soc. 2012;94:1–12.

    Google Scholar 

  111. Cochain B, Neuville DR, de Ligny D, Malki M, Testemale D, Pinet O, Richet P. Dynamics of iron-bearing borosilicate melts: effects of melt structure and composition on viscosity, electrical conductivity and kinetics of redox reactions. J Non-Cryst Solids. 2013;373–374:18–27.

    Article  CAS  Google Scholar 

  112. Henderson GS, Fleet ME. The structure of Ti silicate glasses by micro-Raman spectroscopy. Can Miner. 1995;33:399–408.

    CAS  Google Scholar 

  113. Mysen BO, Neuville DR. Effect of temperature and TiO2 content on the structure of Na2Si2O5-Na2Ti2O5 melts and glasses. Geochim Cosmochim Acta. 1995;59:325–342113.

    Article  CAS  Google Scholar 

  114. Kravets VG, Kolmykova VY. Raman scattering of light in silicon nanostructures: first-and second-order spectra. Opt Spectrosc. 2005;99:68–73.

    Article  CAS  Google Scholar 

  115. Scott JF, Porto SPS. Longitudinal and transverse optical lattice vibrations in quartz. Phys Rev. 1967;161:903–10.

    Article  CAS  Google Scholar 

  116. She Y, Masso JD, Edwards DF. Raman scattering by polarization waves in uniaxial crystals. J Phys Chem Solids. 1971;32:1887–900.

    Article  CAS  Google Scholar 

  117. Bates D, Quist A. Polarized Raman spectra of β-quartz. J Chem Phys. 1972;56:1529–33.

    Article  Google Scholar 

  118. Etchepare J, Merian M, Smetankine L. Vibrational normal modes of SiO2. I α and β quartz. J Chem Phys. 1974;60:1873–9.

    Article  CAS  Google Scholar 

  119. Saksena BD. Analysis of the Raman and infra-red spectra of co-quartz. Proc Indian Acad Sci A. 1940;12:93–138.

    Article  Google Scholar 

  120. Kleinman DA, Spitzer WG. Theory of the optical properties of quartz in the infrared. Phys Rev. 1962;125:16–30.

    Article  CAS  Google Scholar 

  121. Sharma SK, Mammone JF, Nicol MF. Raman investigation of ring configurations in vitreous silica. Nature. 1981;292:140–1.

    Article  CAS  Google Scholar 

  122. Hemley RJ, Mao HK, Bell PM, Mysen BO. Raman spectroscopy of SiO2 glass at high pressure. Phys Rev Lett. 1986;57:747–50.

    Article  CAS  Google Scholar 

  123. Kingma KJ, Hemley RJ, Mao H, Veblen D. New high-pressure transformation in α-quartz. Phys Rev Lett. 1993;70:3927–32.

    Article  CAS  Google Scholar 

  124. Henderson GS, Neuville DR, Cochain B, Cormier L. In-situ high temperature Raman studies of melts along the SiO2-GeO2 join. J Non-Cryst Solids. 2009;355:468–74.

    Article  CAS  Google Scholar 

  125. Henderson GS, Fleet ME. The structure of glasses along the Na2O-GeO2 join. J Non-Cryst Solids. 1991;134:259.

    Article  CAS  Google Scholar 

  126. Micoulaut M, Cormier L, Henderson GS. The structure of amorphous, crystalline and liquid GeO2. J Phys Condens Matter. 2006;18:R753–72.

    Article  CAS  Google Scholar 

  127. Galeener FL, Lucovsky G. Longitudinal optical vibrations in glasses: GeO2 and SiO2. Phys Rev Lett. 1976;37:1474–8.

    Article  CAS  Google Scholar 

  128. Malinovsky VK, Sokolov AP. The nature of the boson peak in Raman scattering in glasses. Solid State Commun. 1986;57:757–61.

    Article  Google Scholar 

  129. Bucheneau U, Prager M, Nucker N, Dianoux AJ, Ahmad N, Phillips WA. Low-frequency modes in vitreous silica. Phys Rev B. 1986;34:5665–73.

    Article  Google Scholar 

  130. Shibata N, Horigudhi M, Edahiro T. Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3. J Non-Cryst Solids. 1981;45:115.

    Article  CAS  Google Scholar 

  131. Sharma SK, Matson DW, Philpotts JA, Roush TL. Raman study of the structure of glasses along the join SiO2-GeO2. J Non-Cryst Solids. 1984;68:99–114.

    Article  CAS  Google Scholar 

  132. Nian X, Zhisan X, Decheng T. A Raman study of the ring defects in GeO2-SiO2 glasses. J Phys Condens Matter. 1969;1:6343–6.

    Article  Google Scholar 

  133. Duverger C, Turrell S, Bouazaoui M, Tonelli F, Montagna M, Ferrarie M. Preparation of SiO2—GeO2: Eu3+ planar waveguides and characterization by waveguide Raman and luminescence spectroscopies. Philos Mag B. 1998;77:363.

    Article  CAS  Google Scholar 

  134. Martinez V, Le Parc R, Martinet C, Champagnon B. Radial distribution of the fictive temperature in pure silica optical fibers by micro-Raman spectroscopy. Opt Mater. 2003;24:59–63.

    Article  CAS  Google Scholar 

  135. Majérus O, Cormier L, Neuville DR, Galoisy L, Calas G. The structure of SiO2-GeO2 glasses : a spectroscopic study. J Non-Cryst Solids. 2008;354:2004–9.

    Article  CAS  Google Scholar 

  136. Cicconi MR, Neuville DR, Blanc W, Lupi JF, Vermillac M, Ligny D. Cerium/aluminium correlation in aluminosilicate glasses and optical silica fiber preforms. J Non-Cryst Solids. 2017;475:85–95.

    Article  CAS  Google Scholar 

  137. Reinkober O. Über absorption und reflexion ultraroter strahlen durch quarz, turmalin und diamant. Ann Phys Berlin. 1911;34:343–7.

    Article  CAS  Google Scholar 

  138. Zachariasen WH. The atomic arrangement in glass. J Am Chem Soc. 1932;54:3841–51.

    Article  CAS  Google Scholar 

  139. Novikov A, Neuville DR, Hennet L, Thiaudière D, Gueguen Y, Florian P. Al and Sr environment in tectosilicate glasses and melts: viscosity, Raman and NMR investigation. Chem Geol. 2017;461:115–27.

    Article  CAS  Google Scholar 

  140. O’Shaughnessy C, Henderson GS, Nesbitt HW, Bancroft GM, Neuville DR. The structure of caesium silicate glasses and melts: implications for the interpretation of Raman spectra. Chem Geol. 2017;461:82–95.

    CAS  Google Scholar 

  141. Bell RJ, Bird NF, Dean P. The vibrational spectra of vitreous silica, Germania and beryllium fluoride. J Phys C Solid State. 1968;1:299–303.

    Article  CAS  Google Scholar 

  142. Bell RJ, Dean P. Localization of phonons in vitreous silica and related glasses. In: Douglas RW, Ellis B, editors. International conference on the physics of non-crystalline solids. 3rd ed. Hoboken, NJ: Wiley-Interscience; 1972. p. 443–52.

    Google Scholar 

  143. Phillips JC. Microscopic origin of anomalously narrow Raman lines in network glasses. J Non-Cryst Solids. 1984;63:347–55.

    Article  CAS  Google Scholar 

  144. Galeener FL, Barrio RA, Martinez E, Elliott RJ. Vibrational decoupling of rings in amorphous solids. Phys Rev Lett. 1984;53:2429–32.

    Article  CAS  Google Scholar 

  145. Galeener FL. Planar rings in vitreous silica. J Non-Cryst Solids. 1982;49:53–62.

    Article  CAS  Google Scholar 

  146. Galeener FL. Planar rings in glasses. Solid State Commun. 1982;44:1037–40.

    Article  CAS  Google Scholar 

  147. Mysen BO, Virgo D. Solubility mechanisms of carbon dioxide in silicate melts: a Raman spectroscopic study. Am Mineral. 1980;65:885–99.

    CAS  Google Scholar 

  148. Galeener FL, Leadbetter AJ, Stringfellow MW. Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2. Phys Rev B. 1983;27:1052–78.

    Article  CAS  Google Scholar 

  149. Sharma SK, Philpotts JA, Matson DW. Ring distributions in alkali- and alkaline-earth aluminosilicate framework glasses – a Raman spectroscopic study. J Non-Cryst Solids. 1985;71:403–10.

    Article  CAS  Google Scholar 

  150. Pasquarello A, Car R. Identification of Raman defect lines as signatures of ring structures in vitreous silica. Phys Rev Lett. 1998;80:5145–7.

    Article  CAS  Google Scholar 

  151. Pasquarello A. First-principles simulation of vitreous systems. Curr Opin Solid St M. 2001;5:503–8.

    Article  CAS  Google Scholar 

  152. Umari P, Pasquarello A. Modeling of the Raman spectrum of vitreous silica: concentration of small ring structures. Physica B. 2002;316-317:572–4.

    Article  CAS  Google Scholar 

  153. Umari P, Gonze X, Pasquarello A. Concentration of small ring structures in vitreous silica from a first-principles analysis of the Raman Spectrum. Phys Rev Lett. 2003;90:867–755.

    Article  CAS  Google Scholar 

  154. Rahmani A, Benoit M, Benoit C. Signature of small rings in the Raman spectra of normal and compressed amorphous silica:a combined classical and ab initio study. Phys Rev B. 2003;68:184202.

    Article  CAS  Google Scholar 

  155. Kalampounias AG, Yannopoulos SN, Papatheodorou GN. Temperature-induced structural changes in glassy, supercooled, and molten silica from 77 to 2150 K. J Chem Phys. 2006;124:014504–9.

    Article  CAS  Google Scholar 

  156. Furukawa T, Fox KE, White WB. Raman spectroscopic investigation of the structure of silicate glasses. III Raman intensities and structural units in sodium silicate glasses. J Chem Phys. 1981;75:3226–37.

    Article  CAS  Google Scholar 

  157. Sen PN, Thorpe MF. Phonon in AX2 glasses: from molecular to band-like modes. Phys Rev B. 1977;15:4030–8.

    Article  CAS  Google Scholar 

  158. Galeener FL. Band limits and the vibrational spectra of tetrahedral glasses. Phys Rev B. 1979;19:4292–397.

    Article  CAS  Google Scholar 

  159. Fukumi K, Hayakawa J, Komiyama T. Intensity of Raman band in silicate glasses. J Non-Cryst Solids. 1990;119:297–302.

    Article  CAS  Google Scholar 

  160. Zotov N. Effects of composition on the vibrational properties of sodium silicate glasses. J Non-Cryst Solids. 2001;287:231–6.

    Article  CAS  Google Scholar 

  161. Bancroft M, Nesbitt HW, Henderson GS, O’Shaughnessy C, Withers AC, Neuville DR. Lorentzian dominated line shapes and linewidths for Raman symmetric stretch peaks (800–1200 cm−1) in Qn (n = 1–3) species of alkali silicate glasses/melts. J Non-Cryst Solids. 2018;484:72–83.

    Article  CAS  Google Scholar 

  162. Nesbitt HW, O’Shaughnessy C, Bancroft GM, Henderson GS, Neuville DR. Raman intensities, line shapes and widths of the Q4 and Q3 bands: Cs silicate glasses. Chem Geol. 2018; https://doi.org/10.1016/j.chemgeo.2018.12.009.

  163. Nesbitt HW, O’Shaughnessy C, Henderson GS, Bancroft GM, Neuville DR. Factors affecting line shapes and intensities of Q3 and Q4 Raman bands of Cs silicate glasses. Chem Geol. 2019;505:1–11.

    Article  CAS  Google Scholar 

  164. Brawer SA, White WB. Raman spectroscopic investigation of the structure of silicate glasses. I The binary alkali silicates. J Chem Phys. 1975;63:2421–32.

    Article  CAS  Google Scholar 

  165. Virgo D, Mysen BO, Kushiro I. Anionic constitution of silicate melts quenched at 1 atm from Raman spectroscopy: implications for the structure of igneous melts. Science. 1980;208:1371–3.

    Article  CAS  Google Scholar 

  166. Ben Kacem I, Gautron L, Coillot D, Neuville DR. Structure and properties of lead silicate glasses and melts. Chem Geol. 2017;461:104–14.

    Article  CAS  Google Scholar 

  167. Brückner RJ. Structural aspects of highly deformed glass melts. J Non-Cryst Solids. 1987;95–96(Part 2):961–668.

    Article  Google Scholar 

  168. Dingwell DB, Webb S. Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes. Phys Chem Miner. 1989;16:508.

    Article  CAS  Google Scholar 

  169. Simmons JH, Mohr RK, Montrose CJ. Non-Newtonian viscous flow in glass. J Appl Phys. 1982;53:4075–9.

    Article  CAS  Google Scholar 

  170. Li JH, Uhlmann DR. The flow of glass at high stress levels: I. non-Newtonian behavior of homogeneous 0.08 Rb2O-0.92 SiO2 glasses. J Non-Cryst Solids. 1970;3:127–47.

    Article  Google Scholar 

  171. Webb SL, Dingwell DB. Non-Newtonian rheology of igneous melts at high stresses and strain rates: experimental results for rhyolite, andesite, basalt, and nephelinite. J Geophys Res Solid Earth. 1990;95:15695.

    Article  Google Scholar 

  172. Webb SL, Dingwell DB. The onset of non-Newtonian rheology of silicate melts. Phys Chem Miner. 1990;17:125.

    Article  CAS  Google Scholar 

  173. Stockhorst H, Brückner R. Structure sensitive measurements on E-glass fibers. J Non-Cryst Solids. 1982;49:471–8.

    Article  CAS  Google Scholar 

  174. Champagnon B, Degioanni S, Martinet C. Anisotropic elastic deformation of silica glass under uniaxial stress. J Appl Phys. 2014;116:123509.

    Article  CAS  Google Scholar 

  175. Lancry ER, Poumellec B. Fictive temperature in silica-based glasses and its application to optical fiber manufacturing. Prog Mater Sci. 2012;57(1):63–97.

    Article  CAS  Google Scholar 

  176. Bidault X, Chaussedent S, Blanc W, Neuville DR. Deformation of silica glass studied by molecular dynamics: structural origin of the anisotropy and non-Newtonian behavior. J Non-Cryst Solids. 2016;433:38–44.

    Article  CAS  Google Scholar 

  177. Dianoux AJ, Buchenau U, Prager M, Nücker N. Low frequency excitations in vitreous silica. Phys BC. 1986;138:264.

    Article  CAS  Google Scholar 

  178. Alessi S, Girard M, Cannas S, Agnello A, Boukenter OY. Influence of drawing conditions on the properties and radiation sensitivities of pure-silica-core optical fibers. J Light Technol. 2012;30:1726.

    Article  CAS  Google Scholar 

  179. Kozanecki M, Duval E, Ulanski J, Boiteux G. Determination of the molecular orientation in the polymeric liquid crystalline systems by low frequency Raman spectroscopy. Polymer. 2004;45:3781.

    Article  CAS  Google Scholar 

  180. Deschamps T, Martinet C, Neuville DR, de Ligny D, Coussa C, Champagnon B. Silica under hydrostatic pressure: a non continuos medium behavior. J Non-Cryst Solids. 2009;355:2422–5.

    Article  CAS  Google Scholar 

  181. Champagnon B, Martinet C, Boudeulle M, Vouagner D, Coussa C, Deschamps T, Grosvalet L. High pressure elastic and plastic deformations of silica: in situ diamond anvil cell Raman experiments. J Non-Cryst Solids. 2008;354:569.

    Article  CAS  Google Scholar 

  182. Masso JD, She CY, Edwards DF. Effects of inherent electric and anisotropic forces on Raman spectra in -quartz. Phys Rev B. 1970;1:4179–83.

    Article  Google Scholar 

  183. Tool AQ. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Am Ceram Soc. 1946;29:240–53.

    Article  CAS  Google Scholar 

  184. Kim M, Tomozawa SD, Orcel. Fictive temperature measurement of single-mode optical-fiber core and cladding. J Lightwave Technol. 2001;19:1155.

    Article  CAS  Google Scholar 

  185. Helander P. Measurement of fictive temperature of silica glass optical fibers. J Mater Sci. 2004;39:3799–800.

    Article  CAS  Google Scholar 

  186. Agarwal A, Davis K, Tomozawa M. A simple IR spectroscopic method for determining fictive temperature of silica glasses. J Non-Cryst Solids. 1995;185:191–8.

    Article  CAS  Google Scholar 

  187. Lancry FI, Depecker C, Poumellec B, Simons D, Nouchi P, Douay M. Fictive-temperature map** in highly Ge-doped multimode optical fibers. J Lightwave Technol. 2007;25:1198–205.

    Article  CAS  Google Scholar 

  188. Saito K, Yamaguchi M, Ikushima A, Ohsono K, Kurosawa Y. Approach for reducing the Rayleigh scattering loss in optical fibers. J Appl Phys. 2004;95:1733–8.

    Article  CAS  Google Scholar 

  189. Sakaguchi TS. Rayleigh scattering of silica core optical fiber after heat treatment. Appl Opt. 1998;37:7708–11.

    Article  CAS  Google Scholar 

  190. Sakaguchi. Relaxation of Rayleigh scattering in silica core optical fiber by heat treatment. Electron Commun Japan (Part II: Electron). 2000;83:35–41.

    Article  Google Scholar 

  191. Kakiuchida SE, Saito K, Ikushima A. Effect of chlorine on Rayleigh scattering reduction in silica glass. Jpn J Appl Phys. 2003;42:L1526.

    Article  CAS  Google Scholar 

  192. Kakiuchida, Saito K, Ikushima A. Rayleigh scattering in fluorine-doped silica glass. Jpn J Appl Phys. 2003;42:6516.

    Article  CAS  Google Scholar 

  193. Mihailov GD, Hnatovsky C, Walker F, Lu P, Coulas D, Ding HM. Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings. Sensors. 2017;17(12):2909.

    Article  Google Scholar 

  194. Canning J, Bandyopadhyay S, Biswas P, Aslund M, Stevenson M, Cook K. Regenerated fiber Bragg gratings. London: IntechOpen; 2010.

    Google Scholar 

  195. Canning J, Stevenson M, Bandyopadhyay S, Cook K. Extreme silica optical fibre gratings. Sensors. 2008;8:6448–52.

    Article  CAS  Google Scholar 

  196. Lancry M, Cook K, Pallarés-Aldeiturriaga D, Lopez-Higuera JM, Poumellec B, Canning J. Raman spectroscopic study of Bragg gratings regeneration, Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, sensors, networks, SPPCom, SOF), OSA technical digest (online) (Optical Society of America, 2018), paper BM2A.4.

    Google Scholar 

  197. Lancry M, Poumellec B. UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials. Phys Rep. 2013;522:239–61.

    CAS  Google Scholar 

  198. Lancry M, Poumellec B, Canning J, Cook K, Poulin JC, Brisset F. Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. Laser Photonics Rev. 2013;7:953–62.

    Article  CAS  Google Scholar 

  199. Primak W. Fast-neutron-induced changes in quartz and vitreous silica. Phys Rev. 1958;110:1240–54.

    Article  CAS  Google Scholar 

  200. Vanelstraete A, Laermans C. Saturation of the density of states of tunneling systems in defective crystalline neutron-irradiated quartz. Phys Rev B. 1988;38:6312–5.

    Article  CAS  Google Scholar 

  201. Seward TP III, Smith C, Borrelli NF, Allan DC. Densification of synthetic fused silica under ultraviolet irradiation. J Non-Cryst Solids. 1997;222:407–14.

    Article  CAS  Google Scholar 

  202. Primak W, Kampwirth R. The radiation compaction of vitreous silica. J Appl Phys. 1968;39:5651–8.

    Article  CAS  Google Scholar 

  203. Devine RAB. Macroscopic and microscopic effects of radiation in amorphous SiO2. Nucl Instrum Methods Phys Res. 1994;91:378–90.

    Article  CAS  Google Scholar 

  204. Spaargaren SMR, Syms Richard RA. Characterization of defects in waveguides formed by electron irradiation of silica-on-silicon. J Lightwave Technol. 2000;18:555.

    Article  CAS  Google Scholar 

  205. Barbier D, Green M, Madden SJ. Waveguide fabrication for integrated optics by electron beam irradiation of silica. J Lightwave Technol. 1991;9:715–20.

    Article  CAS  Google Scholar 

  206. Ollier N, Piven K, Martinet C, Billotte T, Martinez V, Neuville DR, Lancry M. Impact of glass density on the green emission and NBOHC formation in silica glass: a combined high pressure and 2.5 MeV electron irradiation. J Non-Cryst Solids. 2017;476:81–6.

    Article  CAS  Google Scholar 

  207. Ollier N, Lancry M, Martinet C, Martinez V, Neuville DR. Relaxation study of pre-densified silica glasses under 2.5 MeV electron irradiation. Sci Rep. 2019; https://doi.org/10.1038/s41598-018-37751-9.

  208. Boizot B, Petite G, Ghaleb D, Reynard B, Calas G. Raman study of β-irradiated glasses. J Non-Cryst Solids. 1999;243:268.

    Article  CAS  Google Scholar 

  209. Neuville DR, Cormier L, Boizot B. Structure of β-irradiated glasses studied by X-ray absorption and Raman spectroscopies. J Non-Cryst Solids. 2003;323:207–13.

    Article  CAS  Google Scholar 

  210. Balan E, Neuville DR, Trocellier P, Fritsch E, Muller JP, Calas G. Zircon metamictization, zircon stability and zirconium mobility. Am Mineral. 2001;86:1025–33.

    Article  CAS  Google Scholar 

  211. Girard S, Marcandella C, Morana A, Perisse J, Di Francesca D, Paillet P, Macé JR, Boukenter A, Léon M, Gaillardin M, Richard N, Raine M, Agnello S, Cannas M, Ouerdane Y. Combined high dose and temperature radiation effects on multimode silica-based optical fibers. IEEE Trans Nucl Sci. 2013;60(3):2015–36.

    Article  CAS  Google Scholar 

  212. Berghmans F, Brichard B, Fernandez AF, Gusarov A, Uffelen MV, Girard S. An introduction to radiation effects on optical components and Fiber optic sensors. Springer Netherlands Dordrecht; 2008. p. 340.

    Google Scholar 

  213. Hayami H. Radiation resistant multiple fiber. US Patent 4988162; 1991.

    Google Scholar 

  214. Ishiguro Y, Kyoto M, Kanamori H. Method for producing glass preform for optical fiber. US Patent 5163987; 1992.

    Google Scholar 

  215. Henschel H, Grobnic D, Hoeffgen SK, Kuhnhenn J, Mihailov SJ, Weinand U. Development of highly radiation resistant fiber Bragg gratings. Trans Nucl Sci. 2011;58(4):2103–10.

    Article  CAS  Google Scholar 

  216. Morana A, Girard S, Cannas M, Marin E, Marcandella C, Paillet P, Perisse J, Mace JR, Boscaino R, Nacir B, Boukenter A, Ouerdane Y. Influence of neutron and gamma-ray irradiations on rad-hard optical fiber. Opt Mater Express. 2015;5:898–911.

    Article  CAS  Google Scholar 

  217. Yamaguchi M, Saito K, Ikushima AJ. Fictive-temperature-dependence of photoinduced self-trapped holes in amorphous SiO2. Phys Rev B. 2003;68:153204–4308.

    Article  CAS  Google Scholar 

  218. Wang RP, Tai N, Saito K, Ikushima AJ. Fluorine-do** concentration and fictive temperature dependence of self-trapped holes in glasses. J Appl Phys. 2005;98:023701–5.

    Article  CAS  Google Scholar 

  219. Babu H, Lancry M, Ollier N, El Hamzaoui H, Bouazaoui M, Poumellec B. Radiation hardening of sol gel-derived silica fiber preforms through fictive temperature reduction. Appl Opt. 2016;55(27):7455–61.

    Article  CAS  Google Scholar 

  220. Poumellec M, Lancry A, Erraji C, Kazansky PG. Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters. Opt Mater Express. 2011;1:766–82.

    Article  Google Scholar 

  221. Eaton SM, Zhang HB, Herman PR, Yoshino F, Shah L, Bovatsek J, Arai AY. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt Express. 2005;13:4708–16.

    Article  Google Scholar 

  222. Zimmermann F, Lancry M, Plech A, Richter S, Ullsperger T, Poumellec B, Tünnermann A, Nolte S. Ultrashort pulse laser processing of silica at high repetition rates—from network change to residual strain. Int J Appl Glas Sci. 2017;8:233–8.

    Article  CAS  Google Scholar 

  223. Le Parc R, Levelut C, Pelous J, Martinez CB. Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour. J Phys Condens Matter. 2006;18:7507–27.

    Article  CAS  Google Scholar 

  224. Bridgman PW, Simon I. Effects of very high pressures on glass. J Appl Phys. 1953;24:405.

    Article  CAS  Google Scholar 

  225. Susman S, Volin KJ, Price DL, Grimsditch M, Rino JP, Kalia RK, Vashishta P, Gwanmesia G, Wang Y, Liebermann RC. Intermediate-range order in permanently densified vitreous: a neutron-diffraction and molecular-dynamics study. Phys Rev B. 1991;43:1194–999.

    Article  CAS  Google Scholar 

  226. Cohen HM, Roy R. Densification of glass at very high pressures. Phys Chem Glasses. 1965;6:149.

    CAS  Google Scholar 

  227. Meade C, Hemley RJ, Mao HK. High-pressure x-ray diffraction of glass. Phys Rev Lett. 1992;69:1387–91.

    Article  CAS  Google Scholar 

  228. Sugiura H, Ikeda R, Kondo K, Yamadaya T. Densified silica glass after shock compression. J Appl Phys. 1997;81:1651–5.

    Article  CAS  Google Scholar 

  229. Deschamps T, Kassir-Bodon A, Sonneville C, Margueritat J, Martinet C, de Ligny D, Mermet A, Champagnon B. Permanent densification of compressed silica glass: a Raman-density calibration curve. J Phys Condens Matter. 2013;25:025402.

    Article  CAS  Google Scholar 

  230. ** W, Vashishta P, Kalia RK, Rino JP. Dynamic structure factor and vibrational properties of SiO2 glass. Phys Rev B. 1993;48:9359.

    Article  CAS  Google Scholar 

  231. Perriot D, Vandembroucq E, Barthel V, Martinez L, Grosvalet CM, Champagnon B. Raman micro-spectroscopic map of plastic strain in indented amorphous silica. J Am Ceram Soc. 2006;89:596–601.

    Article  CAS  Google Scholar 

  232. Cornet A, Martinez V, de Ligny D, Champagnon B, Martinet C. Relaxation processes of densified silica glass. J Chem Phys. 2017;146:094504.

    Article  CAS  Google Scholar 

  233. Heili M, Lancry M, Poumellec B, Burov E, Sansonetti P, Le Losq C, Neuville DR. The dependence of Raman defect bands on densification revisited. J Mater Sci. 2016;51:1659–66.

    Article  CAS  Google Scholar 

  234. Gavenda T, Gedeon O, Jurek K. Irradiation induced densification and its correlation with three-membered rings in vitreous silica. J Non-Cryst Solids. 2015;425:61.

    Article  CAS  Google Scholar 

  235. Verweij H, Hvd B, Breemer RE. Raman scattering of carbonate ions dissolved in potassium silicate glasses. J Am Ceram Soc. 1977;60:529–34.

    Article  CAS  Google Scholar 

  236. Mysen BO, Virgo D, Wendy JH, Scarfe CM. Solubility mechanisms of H2O in silicate melts at high pressures and temperatures: a Raman spectroscopic study. Am Mineral. 1980b;65:900–14.

    CAS  Google Scholar 

  237. Le Losq C, Moretti R, Neuville DR. Speciation and amphoteric behavior of water in aluminosilicate melts and glasses: high-temperature Raman spectroscopy and reaction equilibria. Eur J Mineral. 2013;25:777–90.

    Article  CAS  Google Scholar 

  238. Thomas SM, Thomas R, Davidson P, Reichart P, Koch-Müller M, Dollinger G. Application of Raman spectroscopy to quantify trace water concentrations in glasses and garnets. Am Mineral. 2008;93:1550–7.

    Article  CAS  Google Scholar 

  239. Tsujimura T, Xue X, Kanzaki M, Walter MJ. Sulfur speciation and network structural changes in sodium silicate glasses:constraints from NMR and Raman spectroscopy. Geochim Cosmoschim Acta. 2004;68:5081–101.

    Article  CAS  Google Scholar 

  240. Lenoir M, Grandjean A, Poissonnet S, Neuville DR. Quantification of sulfate solubility in borosilicate glasses using in-situ Raman spectroscopy. J Non-Cryst Solids. 2009;355:1468–73.

    Article  CAS  Google Scholar 

  241. Amalberti J, Neuville DR, Sarda PH, Sator N, Guillot B. Quantification of CO2 dissolved in silicate glasses and melts using Raman spectroscopy: implications for geodynamics. Japan Geophysical Union, Tokyo, 22–27 Mai; 2011.

    Google Scholar 

  242. Amalberti J, Neuville DR, Sarda P, Sator N, Guillot B. Quantification of CO2 dissolved in silicate glasses and melts using Raman spectroscopy: implications for geodynamics. Prague: Goldschmidt; 2011. p. 14–9.

    Google Scholar 

  243. De Ligny D, Neuville DR. Raman spectroscopy: a nice tool to understand nucleation and growth mechanism. In: Neuville DR, Cormier L, Caurant D, Montagne L, editors. From glass to crystal: nucleation, growth and phase separation, from research to applications. Les Ulis: EDP-Sciences; 2017.

    Google Scholar 

  244. Putnis A. An introduction to mineral sciences. New York, NY: Cambridge University Press; 1992.

    Book  Google Scholar 

  245. Neuville DR, Cormier L. In situ crystallization investigations using high facilities. In: Neuville DR, Cormier L, Caurant D, Montagne L, editors. From glass to crystal: nucleation, growth and phase separation, from research to applications. Les Ulis: EDP-Sciences; 2017.

    Google Scholar 

  246. Eckert H. Spying with spins on messy materials: 60 years of glass structure elucidation by NMR spectroscopy. Int J Appl Glas Sci. 2018;9:167–87. https://doi.org/10.1111/ijag.12333.

    Article  Google Scholar 

  247. Lippmaa E, Samoson A, Magi M. High-resolution aluminum-27 NMR of aluminosilicates. J Am Chem Soc. 1986;108:1730–5. https://doi.org/10.1021/ja00268a002.

    Article  CAS  Google Scholar 

  248. Lippmaa E, Maegi M, Samoson A, et al. Investigation of the structure of zeolites by solid-state high-resolution silicon-29 NMR spectroscopy. J Am Chem Soc. 1981;103:4992–6. https://doi.org/10.1021/ja00407a002.

    Article  CAS  Google Scholar 

  249. Ashbrook SE. Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei. Phys Chem Chem Phys. 2009;11:6892. https://doi.org/10.1039/b907183k.

    Article  CAS  Google Scholar 

  250. Medek A, Harwood JS, Frydman L. Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids. J Am Chem Soc. 1995;117:12779–87. https://doi.org/10.1021/ja00156a015.

    Article  CAS  Google Scholar 

  251. Massiot D, Touzo B, Trumeau D, et al. Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei. Solid State Nucl Magn Reson. 1996;6:73–83. https://doi.org/10.1016/0926-2040(95)01210-9.

    Article  CAS  Google Scholar 

  252. Amoureux J-P, Fernandez C, Steuernagel S. ZFiltering in MQMAS NMR. J Magn Reson A. 1996;123:116–8. https://doi.org/10.1006/jmra.1996.0221.

    Article  CAS  Google Scholar 

  253. Ashbrook SE, Griffin JM, Johnston KE. Recent advances in solid-state nuclear magnetic resonance spectroscopy. Annu Rev Anal Chem. 2018;11:485–508. https://doi.org/10.1146/annurev-anchem-061417-125852.

    Article  Google Scholar 

  254. Charpentier T, Menziani MC, Pedone A. Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses. RSC Adv. 2013;3:10550–78. https://doi.org/10.1039/C3RA40627J.

    Article  CAS  Google Scholar 

  255. Eckert H. Structural characterization of noncrystalline solids and glasses using solid state NMR. Prog Nucl Magn Reson Spectrosc. 1992;24:159–293. https://doi.org/10.1016/0079-6565(92)80001-V.

    Article  CAS  Google Scholar 

  256. Edén M. 27Al NMR studies of aluminosilicate glasses. In: Webb GA, editor. Annual reports on NMR spectroscopy. New York, NY: Academic; 2015. p. 237–331.

    Google Scholar 

  257. Edén M. NMR studies of oxide-based glasses. Annu Rep Sect C Phys Chem. 2012;108:177–221. https://doi.org/10.1039/C2PC90006H.

    Article  Google Scholar 

  258. Hanna JV, Smith ME. Recent technique developments and applications of solid state NMR in characterising inorganic materials. Solid State Nucl Magn Reson. 2010;38:1–18. https://doi.org/10.1016/j.ssnmr.2010.05.004.

    Article  CAS  Google Scholar 

  259. MacKenzie KJD, Smith ME. Multinuclear solid-state nuclear magnetic resonance of inorganic materials, volume 6. 1st ed. Pergamon; 2002.

    Google Scholar 

  260. Massiot D, Messinger RJ, Cadars S, et al. Topological, geometric, and chemical order in materials: insights from solid-state NMR. Acc Chem Res. 2013;46:1975–84. https://doi.org/10.1021/ar3003255.

    Article  CAS  Google Scholar 

  261. Massiot D, Fayon F, Montouillout V, et al. Structure and dynamics of oxide melts and glasses: a view from multinuclear and high temperature NMR. J Non-Cryst Solids. 2008;354:249–54. https://doi.org/10.1016/j.jnoncrysol.2007.06.097.

    Article  CAS  Google Scholar 

  262. Pedone A. Recent advances in solid-state NMR computational spectroscopy: the case of alumino-silicate glasses. Int J Quantum Chem. 2016; https://doi.org/10.1002/qua.25134.

  263. Youngman R. NMR spectroscopy in glass science: a review of the elements. Materials. 2018;11:476. https://doi.org/10.3390/ma11040476.

    Article  CAS  Google Scholar 

  264. Bureau B (2014) Structure of chalcogenide glasses characterized by nuclear magnetic resonance (NMR) spectroscopy. In: Adam J-L, Zhang X (eds) Chalcogenide glasses. Cambridge Woodhead Publishing, pp. 36–57.

    Chapter  Google Scholar 

  265. Tricot G. Mixed network phosphate glasses: seeing beyond the 1D 31P MAS-NMR spectra with 2D X/31P NMR correlation maps. In: Webb GA, editor. Annual reports on NMR spectroscopy. New York, NY: Academic; 2019. p. 35–75.

    Google Scholar 

  266. Tricot G, Alpysbay L, Doumert B. Solid state NMR: a powerful tool for the characterization of borophosphate glasses. Molecules. 2020;25:428. https://doi.org/10.3390/molecules25020428.

    Article  CAS  Google Scholar 

  267. Larsen FH, Farnan I. 29Si and 17O (Q)CPMG-MAS solid-state NMR experiments as an optimum approach for half-integer nuclei having long T1 relaxation times. Chem Phys Lett. 2002;357:403–8. https://doi.org/10.1016/S0009-2614(02)00520-1.

    Article  CAS  Google Scholar 

  268. Wiench JW, Lin VS-Y, Pruski M. 29Si NMR in solid state with CPMG acquisition under MAS. J Magn Reson. 2008;193:233–42. https://doi.org/10.1016/j.jmr.2008.05.007.

    Article  CAS  Google Scholar 

  269. Mehring M. Principles of high resolution NMR in solids. 2nd ed. Berlin: Springer-Verlag; 1983.

    Book  Google Scholar 

  270. Slichter CP. Principles of magnetic resonance. 3rd ed. Berlin: Springer-Verlag; 1990.

    Book  Google Scholar 

  271. Tricot G. The structure of Pyrex® glass investigated by correlation NMR spectroscopy. Phys Chem Chem Phys. 2016;18:26764–70. https://doi.org/10.1039/C6CP02996E.

    Article  CAS  Google Scholar 

  272. Tricot G, Delevoye L, Palavit G, Montagne L. Phase identification and quantification in a devitrified glass using homo- and heteronuclear solid-state NMR. Chem Commun. 2005;2005:5289–91. https://doi.org/10.1039/B511207A.

    Article  Google Scholar 

  273. Fayon F, King IJ, Harris RK, et al. Application of the through-bond correlation NMR experiment to the characterization of crystalline and disordered phosphates. Comptes Rendus Chim. 2004;7:351–61. https://doi.org/10.1016/j.crci.2003.10.019.

    Article  CAS  Google Scholar 

  274. Lee SK, Deschamps M, Hiet J, et al. Connectivity and proximity between Quadrupolar nuclides in oxide glasses: insights from through-bond and through-space correlations in solid-state NMR. J Phys Chem B. 2009;113:5162–7. https://doi.org/10.1021/jp810667e.

    Article  CAS  Google Scholar 

  275. Dell WJ, Bray PJ, **ao SZ. 11B NMR studies and structural modeling of Na2O-B2O3-SiO2 glasses of high soda content. J Non-Cryst Solids. 1983;58:1–16. https://doi.org/10.1016/0022-3093(83)90097-2.

    Article  CAS  Google Scholar 

  276. Silver AH, Bray PJ. NMR study of bonding in some solid boron compounds. J Chem Phys. 1960;32:288–92. https://doi.org/10.1063/1.1700918.

    Article  CAS  Google Scholar 

  277. Farnan I, Grandinetti PJ, Baltisberger JH, et al. Quantification of the disorder in network-modified silicate glasses. Nature. 1992;358:31–5. https://doi.org/10.1038/358031a0.

    Article  CAS  Google Scholar 

  278. Fayon F, Roiland C, Emsley L, Massiot D. Triple-quantum correlation NMR experiments in solids using J-couplings. J Magn Reson. 2006;179:49–57. https://doi.org/10.1016/j.jmr.2005.11.002.

    Article  CAS  Google Scholar 

  279. Duer MJ. Introduction to solid-state NMR spectroscopy. Wiley; 2005.

    Google Scholar 

  280. Angeli F, Charpentier T, De Ligny D, Cailleteau C. Boron speciation in soda-lime borosilicate glasses containing zirconium. J Am Ceram Soc. 2010;93:2693–704. https://doi.org/10.1111/j.1551-2916.2010.03771.x.

    Article  CAS  Google Scholar 

  281. Hopf J, Kerisit SN, Angeli F, et al. Glass–water interaction: effect of high-valence cations on glass structure and chemical durability. Geochim Cosmochim Acta. 2016;181:54–71. https://doi.org/10.1016/j.gca.2016.02.023.

    Article  CAS  Google Scholar 

  282. Quad-NMR on solids by D. Freude and J. Haase. http://www.quad-nmr.de/. Accessed 5 Nov 2020.

    Google Scholar 

  283. Youngman RE, Zwanziger JW. Network modification in potassium borate glasses: structural studies with NMR and Raman spectroscopies. J Phys Chem. 1996;100:16720–8. https://doi.org/10.1021/jp961439+.

    Article  CAS  Google Scholar 

  284. Hung I, Howes AP, Parkinson BG, et al. Determination of the bond-angle distribution in vitreous B2O3 by 11B double rotation (DOR) NMR spectroscopy. J Solid State Chem. 2009;182:2402–8. https://doi.org/10.1016/j.jssc.2009.06.025.

    Article  CAS  Google Scholar 

  285. Youngman RE, Haubrich ST, Zwanziger JW, et al. Short-and intermediate-range structural ordering in glassy boron oxide. Science. 1995;269:1416–20. https://doi.org/10.1126/science.269.5229.1416.

    Article  CAS  Google Scholar 

  286. Angeli F, Delaye J-M, Charpentier T, et al. Investigation of Al-O-Si bond angle in glass by 27Al 3Q-MAS NMR and molecular dynamics. Chem Phys Lett. 2000;320:681–7. https://doi.org/10.1016/S0009-2614(00)00277-3.

    Article  CAS  Google Scholar 

  287. Angeli F, Delaye J-M, Charpentier T, et al. Influence of glass chemical composition on the Na-O bond distance: a 23Na 3Q-MAS NMR and molecular dynamics study. J Non-Cryst Solids. 2000;276:132–44. https://doi.org/10.1016/S0022-3093(00)00259-3.

    Article  CAS  Google Scholar 

  288. Angeli F, Charpentier T, Faucon P, Petit J-C. Structural characterization of glass from the inversion of 23Na and 27Al 3Q-MAS NMR spectra. J Phys Chem B. 1999;103:10356–64. https://doi.org/10.1021/jp9910035.

    Article  CAS  Google Scholar 

  289. Ashbrook SE, Le Polls L, Pickard CJ, et al. First-principles calculations of solid-state 17O and 29Si NMR spectra of Mg2SiO4 polymorphs. Phys Chem Chem Phys. 2007;9:1587. https://doi.org/10.1039/b618211a.

    Article  CAS  Google Scholar 

  290. Maekawa H, Maekawa T, Kawamura K, Yokokawa T. The structural groups of alkali silicate glasses determined from 29Si MAS-NMR. J Non-Cryst Solids. 1991;127:53–64. https://doi.org/10.1016/0022-3093(91)90400-Z.

    Article  CAS  Google Scholar 

  291. Charpentier T, Kroll P, Mauri F. First-principles nuclear magnetic resonance structural analysis of vitreous silica. J Phys Chem C. 2009;113:7917–29. https://doi.org/10.1021/jp900297r.

    Article  CAS  Google Scholar 

  292. Angeli F, Villain O, Schuller S, et al. Insight into sodium silicate glass structural organization by multinuclear NMR combined with first-principles calculations. Geochim Cosmochim Acta. 2011;75:2453–69. https://doi.org/10.1016/j.gca.2011.02.003.

    Article  CAS  Google Scholar 

  293. Charpentier T, Ispas S, Profeta M, et al. First-principles calculation of 17O, 29Si, and 23Na NMR spectra of sodium silicate crystals and glasses. J Phys Chem B. 2004;108:4147–61. https://doi.org/10.1021/jp0367225.

    Article  CAS  Google Scholar 

  294. Dupree E, Pettifer RF. Determination of the Si–O–Si bond angle distribution in vitreous silica by magic angle spinning NMR. Nature. 1984;308:523–5. https://doi.org/10.1038/308523a0.

    Article  CAS  Google Scholar 

  295. Gambuzzi E, Pedone A, Menziani MC, et al. Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate first-principles calculations. Geochim Cosmochim Acta. 2014;125:170–85. https://doi.org/10.1016/j.gca.2013.10.025.

    Article  CAS  Google Scholar 

  296. Florian P, Veron E, Green TFG, et al. Elucidation of the Al/Si ordering in gehlenite Ca2Al2SiO7 by combined 29Si and 27Al NMR spectroscopy/quantum chemical calculations. Chem Mater. 2012;24:4068–79. https://doi.org/10.1021/cm3016935.

    Article  CAS  Google Scholar 

  297. Lee SK, Stebbins JF. The degree of aluminum avoidance in aluminosilicate glasses. Am Mineral. 1999;84:937–45.

    Article  CAS  Google Scholar 

  298. Iftekhar S, Leonova E, Edén M. Structural characterization of lanthanum aluminosilicate glasses by 29Si solid-state NMR. J Non-Cryst Solids. 2009;355:2165–74. https://doi.org/10.1016/j.jnoncrysol.2009.06.031.

    Article  CAS  Google Scholar 

  299. Deschamps M, Fayon F, Hiet J, et al. Spin-counting NMR experiments for the spectral editing of structural motifs in solids. Phys Chem Chem Phys. 2008;10:1298–303. https://doi.org/10.1039/B716319C.

    Article  CAS  Google Scholar 

  300. Hiet J, Deschamps M, Pellerin N, et al. Probing chemical disorder in glasses using silicon-29 NMR spectral editing. Phys Chem Chem Phys. 2009;11:6935–40. https://doi.org/10.1039/B906399D.

    Article  CAS  Google Scholar 

  301. Malfait WJ, Halter WE, Morizet Y, et al. Structural control on bulk melt properties: single and double quantum 29Si NMR spectroscopy on alkali-silicate glasses. Geochim Cosmochim Acta. 2007;71:6002–18. https://doi.org/10.1016/j.gca.2007.09.011.

    Article  CAS  Google Scholar 

  302. Wegner S, van Wüllen L, Tricot G. The structure of phosphate and borosilicate glasses and their structural evolution at high temperatures as studied with solid state NMR spectroscopy: phase separation, crystallisation and dynamic species exchange. Solid State Sci. 2010;12:428–39. https://doi.org/10.1016/j.solidstatesciences.2009.03.021.

    Article  CAS  Google Scholar 

  303. Nanba T, Nishimura M, Miura Y. A theoretical interpretation of the chemical shift of Si-29 NMR peaks in alkali borosilicate glasses. Geochim Cosmochim Acta. 2004;68:5103–11. https://doi.org/10.1016/j.gca.2004.05.042.

    Article  CAS  Google Scholar 

  304. Nanba T, Asano Y, Benino Y, et al. Molecular orbital calculation of the Si-29 NMR chemical shift in borosilicates: the effect of boron coordination to SiO4 units. Phys Chem Glas Eur J Glass Sci. 2009;50:301–4.

    CAS  Google Scholar 

  305. Fortino M, Berselli A, Stone-Weiss N, et al. Assessment of interatomic parameters for the reproduction of borosilicate glass structures via DFT-GIPAW calculations. J Am Ceram Soc. 2019;102:7225–43. https://doi.org/10.1111/jace.16655.

    Article  CAS  Google Scholar 

  306. Soleilhavoup A, Delaye J-M, Angeli F, et al. Contribution of first-principles calculations to multinuclear NMR analysis of borosilicate glasses. Magn Reson Chem. 2010;48:S159–70. https://doi.org/10.1002/mrc.2673.

    Article  CAS  Google Scholar 

  307. Lapina OB, Khabibulin DF, Terskikh VV. Multinuclear NMR study of silica fiberglass modified with zirconia. Solid State Nucl Magn Reson. 2011;39:47–57. https://doi.org/10.1016/j.ssnmr.2010.12.002.

    Article  CAS  Google Scholar 

  308. Lapina OB, Khabibulin DF, Papulovskiy ES, et al. The structure of zirconium-silicate fiberglasses and Pt-containing fiberglass catalysts as revealed by solid-state NMR spectroscopy. J Struct Chem. 2013;54:152–67. https://doi.org/10.1134/S0022476613070160.

    Article  CAS  Google Scholar 

  309. Davis MC, Kaseman DC, Parvani SM, et al. Q(n) species distribution in K2O·2SiO2 glass by 29Si magic angle flip** NMR. J Phys Chem A. 2010;114:5503–8. https://doi.org/10.1021/jp100530m.

    Article  CAS  Google Scholar 

  310. Davis MC, Sanders KJ, Grandinetti PJ, et al. Structural investigations of magnesium silicate glasses by 29Si 2D magic-angle flip** NMR. J Non-Cryst Solids. 2011;357:2787–95. https://doi.org/10.1016/j.jnoncrysol.2011.02.045.

    Article  CAS  Google Scholar 

  311. Zhang P, Dunlap C, Florian P, et al. Silicon site distributions in an alkali silicate glass derived by two-dimensional 29Si nuclear magnetic resonance. J Non-Cryst Solids. 1996;204:294–300. https://doi.org/10.1016/S0022-3093(96)00601-1.

    Article  CAS  Google Scholar 

  312. de Oliveira M, Aitken B, Eckert H. Structure of P2O5–SiO2 pure network former glasses studied by solid state NMR spectroscopy. J Phys Chem C. 2018;122:19807–15. https://doi.org/10.1021/acs.jpcc.8b06055.

    Article  CAS  Google Scholar 

  313. Gambuzzi E, Charpentier T, Menziani MC, Pedone A. Computational interpretation of 23Na MQMAS NMR spectra: a comprehensive investigation of the Na environment in silicate glasses. Chem Phys Lett. 2014;612:56–61. https://doi.org/10.1016/j.cplett.2014.08.004.

    Article  CAS  Google Scholar 

  314. Li H, Charpentier T, Du J, Vennam S. Composite reinforcement: recent development of continuous glass fibers. Int J Appl Glas Sci. 2017;8:23–36. https://doi.org/10.1111/ijag.12261.

    Article  CAS  Google Scholar 

  315. Braun M, Yue Y, Rüssel C, Jäger C. Two-dimensional nuclear magnetic resonance evidence for structural order in extruded phosphate glasses. J Non-Cryst Solids. 1998;241:204–7. https://doi.org/10.1016/S0022-3093(98)00802-3.

    Article  CAS  Google Scholar 

  316. Du L-S, Stebbins JF. Solid-state NMR study of metastable immiscibility in alkali borosilicate glasses. J Non-Cryst Solids. 2003;315:239–55. https://doi.org/10.1016/S0022-3093(02)01604-6.

    Article  CAS  Google Scholar 

  317. Kroeker S, Stebbins JF. Three-coordinated Boron-11 chemical shifts in borates. Inorg Chem. 2001;40:6239–46. https://doi.org/10.1021/ic010305u.

    Article  CAS  Google Scholar 

  318. Quintas A, Charpentier T, Majerus O, et al. NMR study of a rare-earth aluminoborosilicate glass with varying CaO-to-Na2O ratio. Appl Magn Reson. 2007;32:613–34. https://doi.org/10.1007/s00723-007-0041-0.

    Article  CAS  Google Scholar 

  319. Quintas A, Caurant D, Majerus O, et al. Effect of compositional variations on charge compensation of AlO4 and BO4 entities and on crystallization tendency of a rare-earth-rich aluminoborosilicate glass. Mater Res Bull. 2009;44:1895–8. https://doi.org/10.1016/j.materresbull.2009.05.009.

    Article  CAS  Google Scholar 

  320. Angeli F, Charpentier T, Molières E, et al. Influence of lanthanum on borosilicate glass structure: a multinuclear MAS and MQMAS NMR investigation. J Non-Cryst Solids. 2013;376:189–98. https://doi.org/10.1016/j.jnoncrysol.2013.05.042.

    Article  CAS  Google Scholar 

  321. Du L-S, Stebbins JF. Network connectivity in aluminoborosilicate glasses: a high-resolution 11B, 27Al and 17O NMR study. J Non-Cryst Solids. 2005;351:3508–20. https://doi.org/10.1016/j.jnoncrysol.2005.08.033.

    Article  CAS  Google Scholar 

  322. Aguiar PM, Kroeker S. Boron speciation and non-bridging oxygens in high-alkali borate glasses. J Non-Cryst Solids. 2007;353:1834–9. https://doi.org/10.1016/j.jnoncrysol.2007.02.013.

    Article  CAS  Google Scholar 

  323. Angeli F, Charpentier T, Jollivet P, et al. Effect of thermally induced structural disorder on the chemical durability of international simple glass. NPJ Mater Degrad. 2018;2:1–11. https://doi.org/10.1038/s41529-018-0052-3.

    Article  CAS  Google Scholar 

  324. Angeli F, Villain O, Schuller S, et al. Effect of temperature and thermal history on borosilicate glass structure. Phys Rev B. 2012;85:054110. https://doi.org/10.1103/PhysRevB.85.054110.

    Article  CAS  Google Scholar 

  325. Wu J, Stebbins JF. Quench rate and temperature effects on boron coordination in aluminoborosilicate melts. J Non-Cryst Solids. 2010;356:2097–108. https://doi.org/10.1016/j.jnoncrysol.2010.08.015.

    Article  CAS  Google Scholar 

  326. Bista S, Morin EI, Stebbins JF. Response of complex networks to compression: ca, La, and Y aluminoborosilicate glasses formed from liquids at 1 to 3 GPa pressures. J Chem Phys. 2016;144:044502. https://doi.org/10.1063/1.4940691.

    Article  CAS  Google Scholar 

  327. Smedskjaer MM, Youngman RE, Striepe S, et al. Irreversibility of pressure induced boron speciation change in glass. Sci Rep. 2014;4:3770. https://doi.org/10.1038/srep03770.

    Article  CAS  Google Scholar 

  328. Wu J, Deubener J, Stebbins JF, et al. Structural response of a highly viscous aluminoborosilicate melt to isotropic and anisotropic compressions. J Chem Phys. 2009;131:104504–10. https://doi.org/10.1063/1.3223282.

    Article  CAS  Google Scholar 

  329. Jakse N, Bouhadja M, Kozaily J, et al. Interplay between non-bridging oxygen, triclusters, and fivefold Al coordination in low silica content calcium aluminosilicate melts. Appl Phys Lett. 2012;101:201903. https://doi.org/10.1063/1.4766920.

    Article  CAS  Google Scholar 

  330. Jaworski A, Stevensson B, Pahari B, et al. Local structures and Al/Si ordering in lanthanum aluminosilicate glasses explored by advanced 27Al NMR experiments and molecular dynamics simulations. Phys Chem Chem Phys. 2012;14:15866–78. https://doi.org/10.1039/C2CP42858J.

    Article  CAS  Google Scholar 

  331. Le Losq C, Neuville DR, Florian P, et al. The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts. Geochim Cosmochim Acta. 2014;126:495–517. https://doi.org/10.1016/j.gca.2013.11.010.

    Article  CAS  Google Scholar 

  332. Neuville DR, Cormier L, Massiot D. Al coordination and speciation in calcium aluminosilicate glasses: effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy. Chem Geol. 2006;229:173–85. https://doi.org/10.1016/j.chemgeo.2006.01.019.

    Article  CAS  Google Scholar 

  333. Neuville DR, Cormier L, Massiot D. Al environment in tectosilicate and peraluminous glasses: a 27Al MQ-MAS NMR, Raman, and XANES investigation. Geochim Cosmochim Acta. 2004;68:5071–9. https://doi.org/10.1016/j.gca.2004.05.048.

    Article  CAS  Google Scholar 

  334. Deters H, de Camargo ASS, Santos CN, et al. Structural characterization of rare-earth doped yttrium aluminoborate laser glasses using solid state NMR. J Phys Chem C. 2009;113:16216–25. https://doi.org/10.1021/jp9032904.

    Article  CAS  Google Scholar 

  335. Wegner S, van Wüllen L, Tricot G. Network dynamics and species exchange processes in aluminophosphate glasses: an in situ high temperature magic angle spinning NMR view. J Phys Chem B. 2009;113:416–25. https://doi.org/10.1021/jp8061064.

    Article  CAS  Google Scholar 

  336. van Wüllen L, Wegner S, Tricot G. Structural changes above the glass transition and crystallization in aluminophosphate glasses: an in situ high-temperature MAS NMR study. J Phys Chem B. 2007;111:7529–34. https://doi.org/10.1021/jp070692e.

    Article  CAS  Google Scholar 

  337. Angeli F, Gaillard M, Jollivet P, Charpentier T. Contribution of ca-43 MAS NMR for probing the structural configuration of calcium in glass. Chem Phys Lett. 2007;440:324–8. https://doi.org/10.1016/j.cplett.2007.04.036.

    Article  CAS  Google Scholar 

  338. Pahari B, Iftekhar S, Jaworski A, et al. Composition-property-structure correlations of scandium aluminosilicate glasses revealed by multinuclear 45Sc, 27Al, and 29Si solid-state NMR. J Am Ceram Soc. 2012;95:2545–53. https://doi.org/10.1111/j.1551-2916.2012.05288.x.

    Article  CAS  Google Scholar 

  339. Florian P, Sadiki N, Massiot D, Coutures JP. 27Al NMR study of the structure of lanthanum- and yttrium-based aluminosilicate glasses and melts. J Phys Chem B. 2007;111:9747–57. https://doi.org/10.1021/jp072061q.

    Article  CAS  Google Scholar 

  340. Jaworski A, Stevensson B, Edén M. Direct 17O NMR experimental evidence for Al–NBO bonds in Si-rich and highly polymerized aluminosilicate glasses. Phys Chem Chem Phys. 2015;17:18269–72. https://doi.org/10.1039/C5CP02985F.

    Article  CAS  Google Scholar 

  341. Charpentier T, Okhotnikov K, Novikov AN, et al. Structure of strontium aluminosilicate glasses from molecular dynamics simulation, neutron diffraction, and nuclear magnetic resonance studies. J Phys Chem B. 2018;122:9567–83. https://doi.org/10.1021/acs.jpcb.8b05721.

    Article  CAS  Google Scholar 

  342. Allwardt JR, Stebbins JF, Schmidt BC, et al. Aluminum coordination and the densification of high-pressure aluminosilicate glasses. Am Mineral. 2005;90:1218–22. https://doi.org/10.2138/am.2005.1836.

    Article  CAS  Google Scholar 

  343. Allwardt JR, Poe BT, Stebbins JF. The effect of fictive temperature on Al coordination in high-pressure (10 GPa) sodium aluminosilicate glasses. Am Mineral. 2005;90:1453–7. https://doi.org/10.2138/am.2005.1736.

    Article  CAS  Google Scholar 

  344. Kelsey KE, Stebbins JF, Singer DM, et al. Cation field strength effects on high pressure aluminosilicate glass structure: multinuclear NMR and La XAFS results. Geochim Cosmochim Acta. 2009;73:3914–33. https://doi.org/10.1016/j.gca.2009.03.040.

    Article  CAS  Google Scholar 

  345. Lee SK. Effect of pressure on structure of oxide glasses at high pressure: insights from solid-state NMR of quadrupolar nuclides. Solid State Nucl Magn Reson. 2010;38:45–57. https://doi.org/10.1016/j.ssnmr.2010.10.002.

    Article  CAS  Google Scholar 

  346. Park SY, Lee SK. High-resolution solid-state NMR study of the effect of composition on network connectivity and structural disorder in multi-component glasses in the diopside and jadeite join: implications for structure of andesitic melts. Geochim Cosmochim Acta. 2014;147:26–42. https://doi.org/10.1016/j.gca.2014.10.019.

    Article  CAS  Google Scholar 

  347. Bechgaard TK, Goel A, Youngman RE, et al. Structure and mechanical properties of compressed sodium aluminosilicate glasses: role of non-bridging oxygens. J Non-Cryst Solids. 2016;441:49–57. https://doi.org/10.1016/j.jnoncrysol.2016.03.011.

    Article  CAS  Google Scholar 

  348. Chesneau E. Développement d’une nouvelle approche pour la modélisation structurale de verres boratés: combiner Résonance Magnétique Nucléaire (RMN) et Dynamique Moléculaire. Paris: Université Paris-Saclay (ComUE); 2019.

    Google Scholar 

  349. Lee SK, Stebbins JF. The distribution of sodium ions in aluminosilicate glasses: a high-field Na-23 MAS and 3Q MAS NMR study. Geochim Cosmochim Acta. 2003;67:1699–709. https://doi.org/10.1016/S0016-7037(03)00026-7.

    Article  CAS  Google Scholar 

  350. Nicoleau E, Schuller S, Angeli F, et al. Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass. J Non-Cryst Solids. 2015;427:120–33. https://doi.org/10.1016/j.jnoncrysol.2015.07.001.

    Article  CAS  Google Scholar 

  351. Gambuzzi E, Pedone A, Menziani MC, et al. Calcium environment in silicate and aluminosilicate glasses probed by 43Ca MQMAS NMR experiments and MD-GIPAW calculations. Solid State Nucl Magn Reson. 2015;68–69:31–6. https://doi.org/10.1016/j.ssnmr.2015.04.003.

    Article  CAS  Google Scholar 

  352. Shimoda K, Tobu Y, Shimoikeda Y, et al. Multiple Ca2+ environments in silicate glasses by high-resolution 43Ca MQMAS NMR technique at high and ultra-high (21.8 T) magnetic fields. J Magn Reson. 2007;186:156–9. https://doi.org/10.1016/j.jmr.2007.01.019.

    Article  CAS  Google Scholar 

  353. Shimoda K, Tobu Y, Kanehashi K, et al. First evidence of multiple ca sites in amorphous slag structure: multiple-quantum MAS NMR spectroscopy on calcium-43 at high magnetic field. Solid State Nucl Magn Reson. 2006;30:198–202. https://doi.org/10.1016/j.ssnmr.2006.05.002.

    Article  CAS  Google Scholar 

  354. Shimoda K, Nemoto T, Saito K. Local structure of magnesium in silicate glasses: a 25Mg 3QMAS NMR study. J Phys Chem B. 2008;112:6747–52. https://doi.org/10.1021/jp711417t.

    Article  CAS  Google Scholar 

  355. Shimoda K, Tobu Y, Hatakeyama M, et al. Structural investigation of mg local environments in silicate glasses by ultra-high field 25Mg 3QMAS NMR spectroscopy. Am Mineral. 2007;92:695–8. https://doi.org/10.2138/am.2007.2535.

    Article  CAS  Google Scholar 

  356. Stebbins JF, Lee SK, Oglesby JV. Al-O-Al oxygen sites in crystalline aluminates and aluminosilicate glasses; high-resolution oxygen-17 NMR results. Am Mineral. 1999;84:983–6.

    Article  CAS  Google Scholar 

  357. Stebbins JF, Xu Z. NMR evidence for excess non-bridging oxygen in an aluminosilicate glass. Nature. 1997;390:60–2. https://doi.org/10.1038/36312.

    Article  CAS  Google Scholar 

  358. Du L-S, Stebbins JF. Nature of silicon−boron mixing in sodium borosilicate glasses: a high-resolution 11B and 17O NMR study. J Phys Chem B. 2003;107:10063–76. https://doi.org/10.1021/jp034048l.

    Article  CAS  Google Scholar 

  359. Lee SK, Stebbins JF. Nature of cation mixing and ordering in Na-ca silicate glasses and melts. J Phys Chem B. 2003;107:3141–8. https://doi.org/10.1021/jp027489y.

    Article  CAS  Google Scholar 

  360. Lee SK, Stebbins JF. Effects of the degree of polymerization on the structure of sodium silicate and aluminosilicate glasses and melts: an 17O NMR study. Geochim Cosmochim Acta. 2009;73:1109–19. https://doi.org/10.1016/j.gca.2008.10.040.

    Article  CAS  Google Scholar 

  361. Stebbins JF, Oglesby JV, Lee SK. Oxygen sites in silicate glasses: a new view from oxygen-17 NMR. Chem Geol. 2001;174:63–75. https://doi.org/10.1016/S0009-2541(00)00307-7.

    Article  CAS  Google Scholar 

  362. Stebbins JF, Zhao P, Kroeker S. Non-bridging oxygens in borate glasses: characterization by 11B and 17O MAS and 3QMAS NMR. Solid State Nucl Magn Reson. 2000;16:9–19. https://doi.org/10.1016/S0926-2040(00)00050-3.

    Article  CAS  Google Scholar 

  363. Kelsey KE, Allwardt JR, Stebbins JF. Ca–mg mixing in aluminosilicate glasses: an investigation using 17O MAS and 3QMAS and 27Al MAS NMR. J Non-Cryst Solids. 2008;354:4644–53. https://doi.org/10.1016/j.jnoncrysol.2008.05.049.

    Article  CAS  Google Scholar 

  364. Angeli F, Charpentier T, Gaillard M, Jollivet P. Influence of zirconium on the structure of pristine and leached soda-lime borosilicate glasses: towards a quantitative approach by 17O MQMAS NMR. J Non-Cryst Solids. 2008;354:3713–22. https://doi.org/10.1016/j.jnoncrysol.2008.03.046.

    Article  CAS  Google Scholar 

  365. Jaworski A, Charpentier T, Stevensson B, Edén M. Scandium and yttrium environments in Aluminosilicate glasses unveiled by 45Sc/89Y NMR spectroscopy and DFT calculations: what structural factors dictate the chemical shifts? J Phys Chem C. 2017; https://doi.org/10.1021/acs.jpcc.7b05471.

  366. Li H, Eng D, Tang C, Westbrook P. Low dielectric glass development for new PCB materials. Glass Technol Eur J Glass Sci Technol A. 2013;54:81–5.

    CAS  Google Scholar 

  367. Yiannopoulos YD, Chryssikos GD, Kamitsos EI. Structure and properties of alkaline earth glasses. Phys Chem Glasses. 2001;42:164–72.

    CAS  Google Scholar 

  368. Volf MB. Mathematical approach to glass. Amsterdam: Elsevier; 1988. p. 143–68.

    Google Scholar 

  369. Griscom DL. Borate glass structure. In: Pye LD, Frechette VD, Kreidl NJ, editors. Borate glasses structure, properties, applications. Mater Sci Res, vol. 12. New York, NY: Plenum; 1978. p. 11–138.

    Chapter  Google Scholar 

  370. Dimitrov V, Komatsu T. An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength (review). J Univ Chem Technol Metal. 2010;45:219–50.

    CAS  Google Scholar 

  371. Wu JS, Deubener J, Stebbins JF, Grygarova L, Behrens H, Wondraczek L, Yue Y. Structural response of a highly viscous aluminoborosilicate melt to isotropic and anisotropic compressions. J Chem Phys. 2009;131:104504–10.

    Article  CAS  Google Scholar 

  372. Stebbins JF, Spearing DR, Farnan I. Lack of local structural orientation in oxide glasses quenched during flow: NMR results. J Non-Cryst Solids. 1989;110:1–12.

    Article  CAS  Google Scholar 

  373. Li H, Westbrook P. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom. US 9,278,883 Β2, PPG Industries Ohio, Inc; 2016.

    Google Scholar 

  374. Li H, Westbrook P. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom. EP 3191421 B1, electric glass Fiber America LLC; 2020.

    Google Scholar 

  375. Chaker Z, Salanne M, Delaye J-M, Charpentier T. NMR shifts in aluminosilicate glasses via machine learning. Phys Chem Chem Phys. 2019; https://doi.org/10.1039/C9CP02803J.

  376. Cuny J, **e Y, Pickard CJ, Hassanali AA. Ab initio quality NMR parameters in solid-state materials using a high-dimensional neural-network representation. J Chem Theory Comput. 2016; https://doi.org/10.1021/acs.jctc.5b01006.

  377. Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford University Press; 2017.

    Book  Google Scholar 

  378. Du J. Molecular dynamics simulations of oxide glasses. In: Springer handbook of glass. Berlin: Springer; 2019. p. 1131–55.

    Chapter  Google Scholar 

  379. Corrales LR, Du J. Thermal kinetics of glass simulations. Phys Chem Glass. 2005;46:420424.

    Google Scholar 

  380. Lane JMD. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dynamics. Phys Rev E. 2015;92:012320.

    Article  CAS  Google Scholar 

  381. Van Beest B, Kramer GJ, Van Santen RA. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett. 1990;64:1955.

    Article  Google Scholar 

  382. Tsuneyuki S, Tsukada M, Aoki H, Matsui Y. First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett. 1988;61:869.

    Article  CAS  Google Scholar 

  383. Cormack AN, Du J, Zeitler TR. Sodium ion migration mechanisms in silicate glasses probed by molecular dynamics simulations. J Non-Cryst Solids. 2003;323:147–54.

    Article  CAS  Google Scholar 

  384. Pedone A, Malavasi G, Menziani MC, Cormack AN, Segre U. A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J Phys Chem B. 2006;110:11780–95.

    Article  CAS  Google Scholar 

  385. **ang Y, Du J, Smedskjaer MM, Mauro JC. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations. J Chem Phys. 2013;139:044507.

    Article  CAS  Google Scholar 

  386. Ren M, Du J. Structural origin of the thermal and diffusion behaviors of lithium aluminosilicate crystal polymorphs and glasses. J Am Ceram Soc. 2016;99:2823–33.

    Article  CAS  Google Scholar 

  387. Cormack AN, Du J. Molecular dynamics simulations of soda–lime–silicate glasses. J Non-Cryst Solids. 2001;293:283–9.

    Article  Google Scholar 

  388. Ren M, Deng L, Du J. Surface structures of sodium borosilicate glasses from molecular dynamics simulations. J Am Ceram Soc. 2017;100(6):2516–24.

    Article  CAS  Google Scholar 

  389. Cormack AN, Du J, Zeitler TR. Alkali ion migration mechanisms in silicate glasses probed by molecular dynamics simulations. Phys Chem Chem Phys. 2002;4:3193–7.

    Article  CAS  Google Scholar 

  390. Chen C, Du J. Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations. J Am Ceram Soc. 2015;98:534–42.

    Article  CAS  Google Scholar 

  391. Du J, Cormack AN. The medium range structure of sodium silicate glasses: a molecular dynamics simulation. J Non-Cryst Solids. 2004;349:66–79.

    Article  CAS  Google Scholar 

  392. Du J, Kokou L, Rygel JL, Chen Y, Pantano CG, Woodman R, Belcher J. Structure of cerium phosphate glasses: molecular dynamics simulation. J Am Ceram Soc. 2011;94:2393–401.

    Article  CAS  Google Scholar 

  393. Du J, Corrales LR. Understanding lanthanum aluminate glass structure by correlating molecular dynamics simulation results with neutron and X-ray scattering data. J Non-Cryst Solids. 2007;353:210–4.

    Article  CAS  Google Scholar 

  394. Du J, Cormack AN. The structure of erbium doped sodium silicate glasses. J Non-Cryst Solids. 2005;351:2263–76.

    Article  CAS  Google Scholar 

  395. Du J, Cormack AN. Molecular dynamics simulation of the structure and hydroxylation of silica glass surfaces. J Am Ceram Soc. 2005;88:2532–9.

    Article  CAS  Google Scholar 

  396. Du J. Molecular dynamics simulations of the structure and properties of low silica yttrium aluminosilicate glasses. J Am Ceram Soc. 2009;92:87–95.

    Article  CAS  Google Scholar 

  397. Du J, Corrales LR. Structure, dynamics, and electronic properties of lithium disilicate melt and glass. J Chem Phys. 2006;125:114702.

    Article  CAS  Google Scholar 

  398. Lu X, Deng L, Kuo P, Ren M, Buterbaugh I, Du J. Effects of boron oxide substitution on the structure and bioactivity of SrO-containing bioactive glasses. J Mater Sci. 2017;52:8793–811.

    Article  CAS  Google Scholar 

  399. Du J. Challenges in molecular dynamics simulations of multicomponent oxide glasses. In: Molecular dynamics simulations of disordered materials. Berlin: Springer; 2015. p. 157–80.

    Chapter  Google Scholar 

  400. Deng L, Du J. Development of boron oxide potentials for computer simulations of multicomponent oxide glasses. J Am Ceram Soc. 2019;102:2482–505.

    Article  CAS  Google Scholar 

  401. Ren M, Lu X, Deng L, Kuo P, Du J. B 2 O 3/SiO 2 substitution effect on structure and properties of Na 2 O–CaO–SrO–P 2 O 5–SiO 2 bioactive glasses from molecular dynamics simulations. Phys Chem Chem Phys. 2018;20:14090–104.

    Article  CAS  Google Scholar 

  402. Lu X, Deng L, Gin S, Du J. Quantitative structure–property relationship (QSPR) analysis of ZrO2-containing soda-lime borosilicate glasses. J Phys Chem B. 2019;123:1412–22.

    Article  CAS  Google Scholar 

  403. Feuston BP, Garofalini SH. Topological and bonding defects in vitreous silica surfaces. J Chem Phys. 1989;91:564–70.

    Article  CAS  Google Scholar 

  404. Poole PH, McMillan PF, Wolf GH. Computer simulations of silicate melts. Rev Mineral Geochem. 1995;32:563–616.

    CAS  Google Scholar 

  405. Seifert FA, Mysen BO, Virgo D. Structural similarity of glasses and melts relevant to petrological processes. Geochim Cosmochim Acta. 1981;45:1879–84.

    Article  CAS  Google Scholar 

  406. Pedone A. Properties calculations of silica-based glasses by atomistic simulations techniques: a review. J Phys Chem C. 2009;113:20773–84.

    Article  CAS  Google Scholar 

  407. Gale JD. GULP: a computer program for the symmetry adapted simulation of solids. J Chem Soc Faraday Trans. 1997;93:629–37.

    Article  CAS  Google Scholar 

  408. Corrales LR, Du J. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate melts. J Am Ceram Soc. 2006;89:36–41.

    Article  CAS  Google Scholar 

  409. Wright AC. My borate life: an enigmatic journey. Int J Appl Glass Sci. 2015;6:45–63.

    Article  Google Scholar 

  410. Biscoe J, Warren BE. X-ray diffraction study of soda-boric oxide glass. J Am Ceram Soc. 1938;21:287–93.

    Article  CAS  Google Scholar 

  411. Yun YH, Bray PJ. Nuclear magnetic resonance studies of the glasses in the system Na2O-B2O3-SiO2. J Non-Cryst Solids. 1978;27:363–80.

    Article  CAS  Google Scholar 

  412. Yun YH, Feller SA, Bray PJ. Correction and addendum to “nuclear magnetic resonance studies of the glasses in the system Na2O-B2O3-SiO2”. J Non-Cryst Solids. 1979;33:273–7.

    Article  CAS  Google Scholar 

  413. **ao SZ. A discussion about the structural model of “nuclear magnetic resonance studies of glasses in the system Na2O-B2O3-SiO2. J Non-Cryst Solids. 1981;45:29–38.

    Article  CAS  Google Scholar 

  414. Kieu L, Delaye J, Cormier L, Stolz C. Development of empirical potentials for sodium borosilicate glass systems. J Non-Cryst Solids. 2011;357:3313–21.

    Article  CAS  Google Scholar 

  415. Deng L, Du J. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations. J Chem Phys. 2018;148:024504.

    Article  CAS  Google Scholar 

  416. Inoue H, Masuno A, Watanabe Y. Modeling of the structure of sodium borosilicate glasses using pair potentials. J Phys Chem B. 2012;116:12325–31.

    Article  CAS  Google Scholar 

  417. Deng L, Du J. Development of effective empirical potentials for molecular dynamics simulations of the structures and properties of boroaluminosilicate glasses. J Non-Cryst Solids. 2016;453:177–94.

    Article  CAS  Google Scholar 

  418. Pacaud F, Delaye J, Charpentier T, Cormier L, Salanne M. Structural study of Na2O–B2O3–SiO2 glasses from molecular simulations using a polarizable force field. J Chem Phys. 2017;147:161711.

    Article  CAS  Google Scholar 

  419. Salanne M, Rotenberg B, Jahn S, Vuilleumier R, Simon C, Madden PA. Including many-body effects in models for ionic liquids. Theor Chem Accounts. 2012;131:1143.

    Article  CAS  Google Scholar 

  420. Stevensson B, Yu Y, Edén M. Structure–composition trends in multicomponent borosilicate-based glasses deduced from molecular dynamics simulations with improved B–O and P–O force fields. Phys Chem Chem Phys. 2018;20:8192–209.

    Article  CAS  Google Scholar 

  421. Sanders MJ, Leslie M, Catlow C. Interatomic potentials for SiO2. J Chem Soc Chem Commun. 1984;1984:1271–3.

    Article  Google Scholar 

  422. Tilocca A, de Leeuw NH, Cormack AN. Shell-model molecular dynamics calculations of modified silicate glasses. Phys Rev B. 2006;73:104209.

    Article  CAS  Google Scholar 

  423. Tilocca A, Cormack AN, de Leeuw NH. The structure of bioactive silicate glasses: new insight from molecular dynamics simulations. Chem Mater. 2007;19:95–103.

    Article  CAS  Google Scholar 

  424. Tilocca A, Cormack AN. Structural effects of phosphorus inclusion in bioactive silicate glasses. J Phys Chem B. 2007;111:14256–64.

    Article  CAS  Google Scholar 

  425. D’Souza AS, Pantano CG, Kallury KM. Determination of the surface silanol concentration of amorphous silica surfaces using static secondary ion mass spectroscopy. J Vac Sci Technol A. 1997;15:526–31.

    Article  Google Scholar 

  426. D’Souza AS, Pantano CG. Mechanisms for silanol formation on amorphous silica fracture surfaces. J Am Ceram Soc. 1999;82:1289–93.

    Article  Google Scholar 

  427. Sprenger D, Bach H, Meisel W, Gütlich P. XPS study of leached glass surfaces. J Non-Cryst Solids. 1990;126:111–29.

    Article  CAS  Google Scholar 

  428. Zhuravlev LT. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf Physicochem Eng Aspects. 2000;173:1–38.

    Article  CAS  Google Scholar 

  429. Pantano CG, Kelso JF, Suscavage MJ. Surface studies of multicomponent silicate glasses: quantitative analysis, sputtering effects and the atomic arrangement. In: Anonymous advances in materials characterization. Berlin: Springer; 1983. p. 1–38.

    Google Scholar 

  430. Garofalini SH. Molecular dynamics computer simulations of silica surface structure and adsorption of water molecules. J Non-Cryst Solids. 1990;120:1–12.

    Article  CAS  Google Scholar 

  431. Roder A, Kob W, Binder K. Structure and dynamics of amorphous silica surfaces. J Chem Phys. 2001;114:7602–14.

    Article  CAS  Google Scholar 

  432. Rimola A, Costa D, Sodupe M, Lambert J, Ugliengo P. Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev. 2013;113:4216–313.

    Article  CAS  Google Scholar 

  433. Zirl DM, Garofalini SH. Structure of sodium aluminosilicate glass surfaces. J Am Ceram Soc. 1992;75:2353–62.

    Article  CAS  Google Scholar 

  434. Abbas A, Delaye J, Ghaleb D, Calas G. Molecular dynamics study of the structure and dynamic behavior at the surface of a silicate glass. J Non-Cryst Solids. 2003;315:187–96.

    Article  CAS  Google Scholar 

  435. Kwon KD, Criscenti LJ. Na borosilicate glass surface structures: a classical molecular dynamics simulations study. Int J Appl Glas Sci. 2013;26:119–27.

    Google Scholar 

  436. Ren M, Deng L, Du J. Bulk, surface structures and properties of sodium borosilicate and boroaluminosilicate nuclear waste glasses from molecular dynamics simulations. J Non-Cryst Solids. 2017;476:87–94.

    Article  CAS  Google Scholar 

  437. Lu X, Ren M, Deng L, Benmore CJ, Du J. Structural features of ISG borosilicate nuclear waste glasses revealed from high-energy X-ray diffraction and molecular dynamics simulations. J Nucl Mater. 2019;515:284–93.

    Article  CAS  Google Scholar 

  438. Nye JF. Physical properties of crystals: their representation by tensors and matrices. Oxford University Press; 1985.

    Google Scholar 

  439. Zhang C, Duan F, Liu Q. Size effects on the fracture behavior of amorphous silica nanowires. Comput Mater Sci. 2015;99:138–44.

    Article  CAS  Google Scholar 

  440. Muralidharan K, Simmons JH, Deymier PA, Runge K. Molecular dynamics studies of brittle fracture in vitreous silica: review and recent progress. J Non-Cryst Solids. 2005;351:1532–42.

    Article  CAS  Google Scholar 

  441. Ochoa R, Simmons JH. High strain rate effects on the structure of a simulated silica glass. J Non-Cryst Solids. 1985;75:413–8.

    Article  CAS  Google Scholar 

  442. Swiler TP, Simmons JH, Wright AC. Molecular dynamics study of brittle fracture in silica glass and cristobalite. J Non-Cryst Solids. 1995;182:68–77.

    Article  CAS  Google Scholar 

  443. Simmons JH, Swiler TP, Ochoa R. Molecular dynamics studies of brittle failure in silica: bond fracture. J Non-Cryst Solids. 1991;134:179–82.

    Article  CAS  Google Scholar 

  444. Pedone A, Malavasi G, Menziani MC, Segre U, Cormack AN. Molecular dynamics studies of stress–strain behavior of silica glass under a tensile load. Chem Mater. 2008;20:4356–66.

    Article  CAS  Google Scholar 

  445. Guilloteau E, Charrue H, Creuzet F. The direct observation of the core region of a propagating fracture crack in glass. Europhys Lett. 1996;34:549.

    Article  CAS  Google Scholar 

  446. Célarié F, Prades S, Bonamy D, Ferrero L, Bouchaud E, Guillot C, Marliere C. Glass breaks like metal, but at the nanometer scale. Phys Rev Lett. 2003;90:075504.

    Article  CAS  Google Scholar 

  447. Bonamy D, Prades S, Rountree CL, Ponson L, Dalmas D, Bouchaud E, Ravi-Chandar K, Guillot C. Nanoscale damage during fracture in silica glass. Int J Fract. 2006;140:3–14.

    Article  CAS  Google Scholar 

  448. Huang L, Kieffer J. Anomalous thermomechanical properties and laser-induced densification of vitreous silica. Appl Phys Lett. 2006;89:141915.

    Article  CAS  Google Scholar 

  449. Liang Y, Miranda CR, Scandolo S. Mechanical strength and coordination defects in compressed silica glass: molecular dynamics simulations. Phys Rev B. 2007;75:024205.

    Article  CAS  Google Scholar 

  450. Yuan F, Huang L. Brittle to ductile transition in densified silica glass. Sci Rep. 2014;4:5035.

    Article  CAS  Google Scholar 

  451. Yuan F, Huang L. Molecular dynamics simulation of amorphous silica under uniaxial tension: from bulk to nanowire. J Non-Cryst Solids. 2012;358:3481–7.

    Article  CAS  Google Scholar 

  452. Pedone A, Menziani MC, Cormack AN. Dynamics of fracture in silica and soda-silicate glasses: from bulk materials to nanowires. J Phys Chem C. 2015;119:25499–507.

    Article  CAS  Google Scholar 

  453. Höhne GWH, Hemminger WF, Flammersheim HJ. Differential scanning calorimetry. 2nd ed. Berlin: Springer; 2003.

    Book  Google Scholar 

  454. Zheng QJ, Zhang YF, Montazerian M, Gulbiten O, Mauro JC, Zanotto ED, Yue YZ. Understanding glass through differential scanning calorimetry. Chem Rev. 2019;119:7848–939.

    Article  CAS  Google Scholar 

  455. Moynihan CT. Structural relaxation and the glass transition. Rev Mineral. 1995;32:1–19.

    CAS  Google Scholar 

  456. Huang J, Gupta PK. Enthalpy relaxation in thin glass fibers. J Non-Cryst Solids. 1992;151:175–81.

    Article  CAS  Google Scholar 

  457. Yue YZ, Christiansen JD, Jensen SL. Determination of the fictive temperature for a hyperquenched glass. Chem Phys Lett. 2002;357:20–4.

    Article  CAS  Google Scholar 

  458. Yue YZ, Jensen SL, Christiansen JD. Physical aging in a hyperquenched glass. Appl Phys Lett. 2002;81:2983–5.

    Article  CAS  Google Scholar 

  459. Yue YZ, Angell CA. Clarifying the glass-transition behavior of water by comparison with hyperquenched inorganic glasses. Nature. 2004;427:717–20.

    Article  CAS  Google Scholar 

  460. Yue YZ, von der Ohe R, Jensen SL. Fictive temperature, cooling rate and viscosity of glasses. J Chem Phys. 2004;120:8053–9.

    Article  CAS  Google Scholar 

  461. Yue YZ, Solvang M. Stone and glass wool. In: Richet P, editor. Encyclopedia of glass science, technology, history and culture. New York, NY: John & Willy Sons; 2020. ISBN: 978-1118799420.

    Google Scholar 

  462. Hornbøll L, Lonnroth N, Yue YZ. Energy release in isothermally stretched silicate glass fibers. J Am Ceram Soc. 2006;89:70–4.

    Article  CAS  Google Scholar 

  463. Yue YZ, Wondraczek L, Behrens H, Deubener J. Glass transition in an iso-statically compressed calcium metaphosphate glass. J Chem Phys. 2007;126:144902.

    Article  CAS  Google Scholar 

  464. Wondraczek L, Behrens H, Yue YZ, Deubener J, Scherer GW. Relaxation and glass transition in an isostatically compressed diopside glasses. J Am Ceram Soc. 2007;90:1556–61.

    Article  CAS  Google Scholar 

  465. Ya M, Deubener J, Yue YZ. Enthalpy and anisotropy relaxation of glass fibers. J Am Ceram Soc. 2008;91:745–52.

    Article  CAS  Google Scholar 

  466. Lund MD, Yue YZ. Impact of drawing stress on the tensile strength of oxide glass fibers. J Am Ceram Soc. 2010;93:3236–43.

    Article  CAS  Google Scholar 

  467. Striepe S, Smedskjaer MM, Deubener J, Bauer U, Behrens H, Potuzak M, Youngman RE, Mauro JC, Yue YZ. Elastic and micromechanical properties of isostatically compressed soda-lime-borate glasses. J Non-Cryst Solids. 2013;364:44–52.

    Article  CAS  Google Scholar 

  468. Tool AQ, Eichlin CG. Variations caused in the heating curves of glass by heat treatment. J Am Ceram Soc. 1931;14:276–308.

    Article  CAS  Google Scholar 

  469. Ritland HN. Limitations of the fictive temperature concept. J Am Ceram Soc. 1956;39:403–6.

    Article  CAS  Google Scholar 

  470. Narayanaswamy OSA. Model of structural relaxation in glass. J Am Ceram Soc. 1971;54:491–8.

    Article  CAS  Google Scholar 

  471. Mauro JC, Loucks RJ, Gupta PK. Fictive temperature and the glassy state. J Am Ceram Soc. 2009;92:75–86.

    Article  CAS  Google Scholar 

  472. DeBolt MA, Easteal AJ, Macedo PB, Moynihan CT. Analysis of structural relaxation in glass using rate heating data. J Am Ceram Soc. 1976;59:16–21.

    Article  CAS  Google Scholar 

  473. Velikov V, Borick S, Angell CA. The glass transition of water, based on hyperquenching experiments. Science. 2001;294:2335–8.

    Article  CAS  Google Scholar 

  474. Moynihan CT, Easteal AJ, DeBolt MA, Tucker J. Dependence of the fictive temperature of glass on cooling rate. J Am Ceram Soc. 1976;59:12–6.

    Article  CAS  Google Scholar 

  475. Yue YZ. Characteristic temperatures of enthalpy relaxation in glass. J Non-Cryst Solids. 2008;354:1112–8.

    Article  CAS  Google Scholar 

  476. Richet P. Heat capacity of silicate glasses. Chem Geol. 1987;62:111.

    Article  CAS  Google Scholar 

  477. Stillinger FH, Weber TA. Packing structures and transitions in liquids and solids. Science. 1984;225:983–9.

    Article  CAS  Google Scholar 

  478. Saika-Voivod I, Poole PH, Sciortino F. Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Nature. 2001;412:514–7.

    Article  CAS  Google Scholar 

  479. Mauro JC, Yue YZ, Ellison AJ, Gupta PK, Allan DC. Viscosity of glass-forming liquids. Proc Natl Acad Sci U S A. 2009;106:19780–4.

    Article  CAS  Google Scholar 

  480. Von der Ohe R. Simulation of glass fiber forming processes. Ph.D. thesis. Aalborg: Aalborg University; 2003.

    Google Scholar 

  481. Scherer GW. Use of the Adam-Gibbs equation in the analysis of structural relaxation. J Am Ceram Soc. 1984;67:504–11.

    Article  CAS  Google Scholar 

  482. Yue YZ. Features of the relaxation in Hyperquenched inorganic glasses during annealing. Phys Chem Glasses. 2005;46:354–8.

    CAS  Google Scholar 

  483. Zhang YF, Vulfson Y, Zheng QJ, Luo JW, Kim SH, Yue YZ. Impact of fiberizing method on physical properties of glass wool fibers. J Non-Cryst Solids. 2017;476:122–7.

    Article  CAS  Google Scholar 

  484. Rawson H. Internal stresses caused by disorder in vitreous materials. Nature. 1952;171:169.

    Article  Google Scholar 

  485. Park YW, Paek UC, Han S, Kim B, Kim C, Kim DY. Inelastic frozen-in stress in optical fibers. Opt Commun. 2004;242:431–6.

    Article  CAS  Google Scholar 

  486. Angell CA, Yue YZ, Wang LM, Copley JRD, Borick S, Mossa S. Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses. J Phys Cond Matter. 2003;15:S1051–68.

    Article  CAS  Google Scholar 

  487. Wasche R, Brueckner R. The structure of mixed alkali phosphate melts as indicated by their non-Newtonian flow behaviour and optical birefringence. Phys Chem Glasses. 1986;27:87–94.

    Google Scholar 

  488. Stockhorst H, Bruckner R. Structure sensitive measurements on phosphate-glass fibers. J Non-Cryst Solids. 1986;85:105–26.

    Article  CAS  Google Scholar 

  489. Loewenstein KL, Dowd J. An investigation of the relationship between glass fibre tensile strength, the temperature of the glass from which the fibre is drawn, and fibre diameter. Glass Technol. 1968;9:164–71.

    CAS  Google Scholar 

  490. Deubener J, Yue YZ, Bornhöft H, Ya M. Decoupling between birefringence decay, enthalpy relaxation and viscous flow in calcium boroalumosilicate glasses. Chem Geol. 2008;256:298–304.

    Article  CAS  Google Scholar 

  491. Yue YZ. Calorimetric studies of the structural heterogeneity of silicate liquids. Ceram Trans. 2004;170:31–45.

    Google Scholar 

  492. Yue YZ. Anomalous enthalpy relaxation in vitreous silica. Front Mater. 2015;2:54.

    Article  Google Scholar 

  493. Buchenau U, Nücker N, Dianoux AJ. Neutron scattering study of the low-frequency vibrations in vitreous silica. Phys Rev Lett. 1984;53:2316.

    Article  CAS  Google Scholar 

  494. Moreno AJ, Buldyrev SV, La Nave E, Saika-Voivod I, Sciortino F, Tartaglia P, Zaccarelli E. Energy landscape of a simple model for strong liquids. Phys Rev Lett. 2005;95:157802.

    Article  CAS  Google Scholar 

  495. Aasland S, McMillan PF. Density-driven liquid-liquid phase separation in the system Al2O3-Y2O3. Nature. 1994;369:633–6.

    Article  CAS  Google Scholar 

  496. Angell CA. Formation of glasses from liquids and biopolymers. Science. 1995;267:1924–35.

    Article  CAS  Google Scholar 

  497. Hehlen B. Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra. J Phys Condens Matter. 2010;22:025401–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel R. Neuville , T. Charpentier , J. C. Du or Y. Z. Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neuville, D.R. et al. (2021). Structure Characterizations and Molecular Dynamics Simulations of Melt, Glass, and Glass Fibers. In: Li, H. (eds) Fiberglass Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-72200-5_2

Download citation

Publish with us

Policies and ethics

Navigation