The Interferon-Alpha Revival in CML

  • Chapter
  • First Online:
Chronic Myeloid Leukemia

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 845 Accesses

Abstract

Interferon-alpha (IFNα) was once the standard of frontline treatment for chronic myeloid leukemia (CML). Its pleiotropic mechanism of action in CML includes immune activation and specific targeting of CML stem cells. Early studies of IFNα in CML demonstrated that it could induce extremely stable remissions, which correlated with long-term survival. Some patients even sustained their remission after discontinuing therapy, but the mechanism underlying this phenomenon is not well understood. Today, BCR-ABL tyrosine kinase inhibitors (TKIs), such as imatinib, achieve remarkable responses in CML patients and have become the mainstay of CML therapy. Although TKIs target the pathogenic BCR-ABL1 protein in CML, they cannot fully eradicate CML stem cells. Some of the clinical trials testing IFNα plus imatinib combination therapy suggest that addition of IFNα increases the speed and rate of responses with imatinib therapy. Furthermore, emerging data from combination trials with second-generation TKIs suggest long-term use of IFNα may deepen molecular responses in CML patients. However, the undesirable side effects of IFNα can make this therapy difficult to deliver, and the optimal therapeutic window for using IFNα in combination therapy is unclear. Further studies are needed to clarify the best niche for IFNα use in CML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 84.39
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 116.04
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kotredes KP, Gamero AM. Interferons as inducers of apoptosis in malignant cells. J Interferon Cytokine Res. 2013;33(4):162–70. https://doi.org/10.1089/jir.2012.0110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trinchieri G. Type I interferon: friend or foe? J Exp Med. 2010;207(10):2053–63. https://doi.org/10.1084/jem.20101664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375–86. https://doi.org/10.1038/nri1604.

    Article  CAS  PubMed  Google Scholar 

  4. Kiladjian JJ, Mesa RA, Hoffman R. The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood. 2011;117(18):4706–15. https://doi.org/10.1182/blood-2010-08-258772.

    Article  CAS  PubMed  Google Scholar 

  5. Fuchs SY. Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy. J Interferon Cytokine Res. 2013;33(4):211–25. https://doi.org/10.1089/jir.2012.0117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Der SD, Zhou A, Williams BR, Silverman RH. Identification of genes differentially regulated by interferon α, β, or γ using using oligonucleotide arrays. Proc Natl Acad Sci U S A. 1998;95(26):15623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BR. Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol. 2001;69(6):912–20.

    Article  PubMed  Google Scholar 

  8. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, Borden EC. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis. 2003;8(3):237–49.

    Article  CAS  PubMed  Google Scholar 

  9. Maher SG, Romero-Weaver AL, Scarzello AJ, Gamero AM. Interferon: cellular executioner or white knight? Curr Med Chem. 2007;14(12):1279–89.

    Article  CAS  PubMed  Google Scholar 

  10. Bekisz J, Baron S, Balinsky C, Morrow A, Zoon KC. Antiproliferative properties of type I and type II interferon. Pharmaceuticals. 2010;3(4):994–1015. https://doi.org/10.3390/ph3040994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stein BL, Tiu RV. Biological rationale and clinical use of interferon in the classical BCR-ABL-negative myeloproliferative neoplasms. J Interferon Cytokine Res. 2013;33(4):145–53. https://doi.org/10.1089/jir.2012.0120.

    Article  CAS  PubMed  Google Scholar 

  12. Gutterman JU. Cytokine therapeutics: lessons from interferon alpha. Proc Natl Acad Sci U S A. 1994;91(4):1198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. von Marschall Z, Scholz A, Cramer T, Schafer G, Schirner M, Oberg K, Wiedenmann B, Hocker M, Rosewicz S. Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis. J Natl Cancer Inst. 2003;95(6):437–48.

    Article  Google Scholar 

  14. Oliveira IC, Sciavolino PJ, Lee TH, Vilcek J. Downregulation of interleukin 8 gene expression in human fibroblasts: unique mechanism of transcriptional inhibition by interferon. Proc Natl Acad Sci U S A. 1992;89(19):9049–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Slaton JW, Perrotte P, Inoue K, Dinney CP, Fidler IJ. Interferon-alpha-mediated down-regulation of angiogenesis-related genes and therapy of bladder cancer are dependent on optimization of biological dose and schedule. Clin Cancer Res. 1999;5(10):2726–34.

    CAS  PubMed  Google Scholar 

  16. Legros L, Guilhot J, Huault S, Mahon FX, Preudhomme C, Guilhot F, Hueber AO, French CMLG. Interferon decreases VEGF levels in patients with chronic myeloid leukemia treated with imatinib. Leuk Res. 2014;38(6):662–5. https://doi.org/10.1016/j.leukres.2014.01.010.

    Article  CAS  PubMed  Google Scholar 

  17. Indraccolo S. Interferon-alpha as angiogenesis inhibitor: learning from tumor models. Autoimmunity. 2010;43(3):244–7. https://doi.org/10.3109/08916930903510963.

    Article  CAS  PubMed  Google Scholar 

  18. Andrews DF 3rd, Singer JW, Collins SJ. Effect of recombinant α-interferon on the expression of the bcr-abl fusion gene in human chronic myelogenous human leukemia cell lines. Cancer Res. 1987;47(24 Pt 1):6629–32.

    CAS  PubMed  Google Scholar 

  19. Yanagisawa K, Yamauchi H, Kaneko M, Kohno H, Hasegawa H, Fujita S. Suppression of cell proliferation and the expression of a bcr-abl fusion gene and apoptotic cell death in a new human chronic myelogenous leukemia cell line, KT-1, by interferon-α. Blood. 1998;91(2):641–8.

    Article  CAS  PubMed  Google Scholar 

  20. Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE, Davis MM. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med. 2000;6(9):1018–23.

    Article  CAS  PubMed  Google Scholar 

  21. Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science. 1996;272(5270):1947–50.

    Article  CAS  PubMed  Google Scholar 

  22. Hervas-Stubbs S, Riezu-Boj JI, Gonzalez I, Mancheno U, Dubrot J, Azpilicueta A, Gabari I, Palazon A, Aranguren A, Ruiz J, Prieto J, Larrea E, Melero I. Effects of IFN-alpha as a signal-3 cytokine on human naive and antigen-experienced CD8(+) T cells. Eur J Immunol. 2010;40(12):3389–402. https://doi.org/10.1002/eji.201040664.

    Article  CAS  PubMed  Google Scholar 

  23. Lee CK, Rao DT, Gertner R, Gimeno R, Frey AB, Levy DE. Distinct requirements for IFNs and STAT1 in NK cell function. J Immunol. 2000;165(7):3571–7.

    Article  CAS  PubMed  Google Scholar 

  24. Swann JB, Hayakawa Y, Zerafa N, Sheehan KC, Scott B, Schreiber RD, Hertzog P, Smyth MJ. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J Immunol. 2007;178(12):7540–9.

    Article  CAS  PubMed  Google Scholar 

  25. Hughes A, Clarson J, White DL, Yeung D, Hughes TP, Yong ASM. Nilotinib/interferon-α combination rapidly enhances leukaemia-associated antigen-specific cytotoxic T-lymphocyte immune responses, limits natural killer cell maturation and triggers B cell remodelling. Blood. 2017;130(Supplement 1):1581. https://doi.org/10.1182/blood.V130.Suppl_1.1581.1581.

    Article  Google Scholar 

  26. Alves R, McArdle SEB, Vadakekolathu J, Goncalves AC, Freitas-Tavares P, Pereira A, Almeida AM, Sarmento-Ribeiro AB, Rutella S. Flow cytometry and targeted immune transcriptomics identify distinct profiles in patients with chronic myeloid leukemia receiving tyrosine kinase inhibitors with or without interferon-alpha. J Transl Med. 2020;18(1):2. https://doi.org/10.1186/s12967-019-02194-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rizza P, Moretti F, Belardelli F. Recent advances on the immunomodulatory effects of IFN-alpha: implications for cancer immunotherapy and autoimmunity. Autoimmunity. 2010;43(3):204–9. https://doi.org/10.3109/08916930903510880.

    Article  CAS  PubMed  Google Scholar 

  28. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, Lee H, Arthur CD, White JM, Kalinke U, Murphy KM, Schreiber RD. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 2011;208(10):1989–2003. https://doi.org/10.1084/jem.20101158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giron-Michel J, Weill D, Bailly G, Legras S, Nardeux PC, Azzarone B, Tovey MG, Eid P. Direct signal transduction via functional interferon-alphabeta receptors in CD34+ hematopoietic stem cells. Leukemia. 2002;16(6):1135–42. https://doi.org/10.1038/sj.leu.2402492.

    Article  CAS  PubMed  Google Scholar 

  30. Verma A, Deb DK, Sassano A, Uddin S, Varga J, Wickrema A, Platanias LC. Activation of the p38 mitogen-activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor-beta on normal hematopoiesis. J Biol Chem. 2002;277(10):7726–35. https://doi.org/10.1074/jbc.M106640200.

    Article  CAS  PubMed  Google Scholar 

  31. Katsoulidis E, Carayol N, Woodard J, Konieczna I, Majchrzak-Kita B, Jordan A, Sassano A, Eklund EA, Fish EN, Platanias LC. Role of Schlafen 2 (SLFN2) in the generation of interferon alpha-induced growth inhibitory responses. J Biol Chem. 2009;284(37):25051–64. https://doi.org/10.1074/jbc.M109.030445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Joshi S, Kaur S, Redig AJ, Goldsborough K, David K, Ueda T, Watanabe-Fukunaga R, Baker DP, Fish EN, Fukunaga R, Platanias LC. Type I interferon (IFN)-dependent activation of Mnk1 and its role in the generation of growth inhibitory responses. Proc Natl Acad Sci U S A. 2009;106(29):12097–102. https://doi.org/10.1073/pnas.0900562106.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Aman MJ, Keller U, Derigs G, Mohamadzadeh M, Huber C, Peschel C. Regulation of cytokine expression by interferon-alpha in human bone marrow stromal cells: inhibition of hematopoietic growth factors and induction of interleukin-1 receptor antagonist. Blood. 1994;84(12):4142–50.

    Article  CAS  PubMed  Google Scholar 

  34. Aman MJ, Bug G, Aulitzky WE, Huber C, Peschel C. Inhibition of interleukin-11 by interferon-alpha in human bone marrow stromal cells. Exp Hematol. 1996;24(8):863–7.

    CAS  PubMed  Google Scholar 

  35. Sato T, Onai N, Yoshihara H, Arai F, Suda T, Ohteki T. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nat Med. 2009;15(6):696–700. https://doi.org/10.1038/nm.1973.

    Article  CAS  PubMed  Google Scholar 

  36. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, Trumpp A. IFNα activates dormant haematopoietic stem cells in vivo. Nature. 2009;458(7240):904–8. https://doi.org/10.1038/nature07815.

    Article  CAS  PubMed  Google Scholar 

  37. Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J, Binnewies M, Passegue E. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med. 2014;211(2):245–62. https://doi.org/10.1084/jem.20131043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Graham SM, Jørgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99(1):319–25.

    Article  CAS  PubMed  Google Scholar 

  39. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N, Barow M, Mountford JC, Holyoake TL. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood. 2006;107(11):4532–9.

    Article  CAS  PubMed  Google Scholar 

  40. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL, Arber DA, Slovak ML, Forman SJ. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood. 2003;101(12):4701–7.

    Article  CAS  PubMed  Google Scholar 

  41. Mazur EM, Richtsmeier WJ, South K. Alpha-interferon: differential suppression of colony growth from human erythroid, myeloid, and megakaryocytic hematopoietic progenitor cells. J Interf Res. 1986;6(3):199–206.

    Article  CAS  Google Scholar 

  42. Ganser A, Carlo-Stella C, Greher J, Volkers B, Hoelzer D. Effect of recombinant interferons alpha and gamma on human bone marrow-derived megakaryocytic progenitor cells. Blood. 1987;70(4):1173–9.

    Article  CAS  PubMed  Google Scholar 

  43. Wang Q, Miyakawa Y, Fox N, Kaushansky K. Interferon-alpha directly represses megakaryopoiesis by inhibiting thrombopoietin-induced signaling through induction of SOCS-1. Blood. 2000;96(6):2093–9.

    Article  CAS  PubMed  Google Scholar 

  44. Yamane A, Nakamura T, Suzuki H, Ito M, Ohnishi Y, Ikeda Y, Miyakawa Y. Interferon-alpha 2b-induced thrombocytopenia is caused by inhibition of platelet production but not proliferation and endomitosis in human megakaryocytes. Blood. 2008;112(3):542–50. https://doi.org/10.1182/blood-2007-12-125906.

    Article  CAS  PubMed  Google Scholar 

  45. Mayer IA, Verma A, Grumbach IM, Uddin S, Lekmine F, Ravandi F, Majchrzak B, Fujita S, Fish EN, Platanias LC. The p38 MAPK pathway mediates the growth inhibitory effects of interferon-alpha in BCR-ABL-expressing cells. J Biol Chem. 2001;276(30):28570–7.

    Article  CAS  PubMed  Google Scholar 

  46. Lu M, Zhang W, Li Y, Berenzon D, Wang X, Wang J, Mascarenhas J, Xu M, Hoffman R. Interferon-alpha targets JAK2V617F-positive hematopoietic progenitor cells and acts through the p38 MAPK pathway. Exp Hematol. 2010;38(6):472–80. https://doi.org/10.1016/j.exphem.2010.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hasan S, Lacout C, Marty C, Cuingnet M, Solary E, Vainchenker W, Villeval JL. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNalpha. Blood. 2013;122(8):1464–77. https://doi.org/10.1182/blood-2013-04-498956.

    Article  CAS  PubMed  Google Scholar 

  48. Selleri C, Sato T, Del Vecchio L, Luciano L, Barrett AJ, Rotoli B, Young NS, Maciejewski JP. Involvement of Fas-mediated apoptosis in the inhibitory effects of interferon-α in chronic myelogenous leukemia. Blood. 1997;89(3):957–64.

    Article  CAS  PubMed  Google Scholar 

  49. Bhatia R, Verfaillie CM. The effect of interferon-alpha on beta-1 integrin mediated adhesion and growth regulation in chronic myelogenous leukemia. Leuk Lymphoma. 1998;28(3–4):241–54.

    Article  CAS  PubMed  Google Scholar 

  50. Ito K, Tanaka H, Ito T, Sultana TA, Kyo T, Imanaka F, Ohmoto Y, Kimura A. Initial expression of interferon alpha receptor 2 (IFNAR2) on CD34-positive cells and its down-regulation correlate with clinical response to interferon therapy in chronic myelogenous leukemia. Eur J Haematol. 2004;73(3):191–205. https://doi.org/10.1111/j.1600-0609.2004.00275.x.

    Article  CAS  PubMed  Google Scholar 

  51. Yokota A, Hirai H, Sato R, Adachi H, Sato F, Hayashi Y, Sato A, Kamio N, Miura Y, Nakano M, Tenen DG, Kimura S, Tashiro K, Maekawa T. C/EBPbeta is a critical mediator of IFN-alpha-induced exhaustion of chronic myeloid leukemia stem cells. Blood Adv. 2019;3(3):476–88. https://doi.org/10.1182/bloodadvances.2018020503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schubert C, Allhoff M, Tillmann S, Maie T, Costa IG, Lipka DB, Schemionek M, Feldberg K, Baumeister J, Brummendorf TH, Chatain N, Koschmieder S. Differential roles of STAT1 and STAT2 in the sensitivity of JAK2V617F- vs. BCR-ABL-positive cells to interferon alpha. J Hematol Oncol. 2019;12(1):36. https://doi.org/10.1186/s13045-019-0722-9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Biron CA. Interferons alpha and beta as immune regulators--a new look. Immunity. 2001;14(6):661–4.

    Article  CAS  PubMed  Google Scholar 

  54. Molldrem J, Dermime S, Parker K, Jiang YZ, Mavroudis D, Hensel N, Fukushima P, Barrett AJ. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood. 1996;88(7):2450–7.

    Article  CAS  PubMed  Google Scholar 

  55. Burchert A, Muller MC, Kostrewa P, Erben P, Bostel T, Liebler S, Hehlmann R, Neubauer A, Hochhaus A. Sustained molecular response with interferon alfa maintenance after induction therapy with imatinib plus interferon alfa in patients with chronic myeloid leukemia. J Clin Oncol. 2010;28(8):1429–35. https://doi.org/10.1200/JCO.2009.25.5075.

    Article  CAS  PubMed  Google Scholar 

  56. Kanodia S, Wieder E, Lu S, Talpaz M, Alatrash G, Clise-Dwyer K, Molldrem JJ. PR1-specific T cells are associated with unmaintained cytogenetic remission of chronic myelogenous leukemia after interferon withdrawal. PLoS One. 2010;5(7):e11770. https://doi.org/10.1371/journal.pone.0011770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, Wagers AJ, Hsiao EC, Passegue E. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. 2013;13(3):285–99. https://doi.org/10.1016/j.stem.2013.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Indraccolo S, Pfeffer U, Minuzzo S, Esposito G, Roni V, Mandruzzato S, Ferrari N, Anfosso L, Dell'Eva R, Noonan DM, Chieco-Bianchi L, Albini A, Amadori A. Identification of genes selectively regulated by IFNs in endothelial cells. J Immunol. 2007;178(2):1122–35.

    Article  CAS  PubMed  Google Scholar 

  59. Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, Yokochi T, Oda H, Nakamura K, Ida N, Wagner EF, Taniguchi T. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature. 2002;416(6882):744–9. https://doi.org/10.1038/416744a.

    Article  CAS  PubMed  Google Scholar 

  60. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette PS. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–43. https://doi.org/10.1038/nature12612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Landolfo S, Guarini A, Riera L, Gariglio M, Gribaudo G, Cignetti A, Cordone I, Montefusco E, Mandelli F, Foa R. Chronic myeloid leukemia cells resistant to interferon-alpha lack STAT1 expression. Hematol J. 2000;1(1):7–14. https://doi.org/10.1038/sj/thj/6200004.

    Article  CAS  PubMed  Google Scholar 

  62. Pane F, Mostarda I, Selleri C, Salzano R, Raiola AM, Luciano L, Saglio G, Rotoli B, Salvatore F. BCR/ABL mRNA and the P210(BCR/ABL) protein are downmodulated by interferon-alpha in chronic myeloid leukemia patients. Blood. 1999;94(7):2200–7.

    Article  CAS  PubMed  Google Scholar 

  63. Schmidt M, Hochhaus A, Nitsche A, Hehlmann R, Neubauer A. Expression of nuclear transcription factor interferon consensus sequence binding protein in chronic myeloid leukemia correlates with pretreatment risk features and cytogenetic response to interferon-alpha. Blood. 2001;97(11):3648–50.

    Article  CAS  PubMed  Google Scholar 

  64. Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, Rosenbauer F, Lou J, Knobeloch KP, Gabriele L, Waring JF, Bachmann MF, Zinkernagel RM, Morse HC 3rd, Ozato K, Horak I. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell. 1996;87(2):307–17.

    Article  CAS  PubMed  Google Scholar 

  65. Hao SX, Ren R. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol. 2000;20(4):1149–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmidt M, Hochhaus A, Konig-Merediz SA, Brendel C, Proba J, Hoppe GJ, Wittig B, Ehninger G, Hehlmann R, Neubauer A. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy. J Clin Oncol. 2000;18(19):3331–8.

    Article  CAS  PubMed  Google Scholar 

  67. Mittrucker HW, Matsuyama T, Grossman A, Kundig TM, Potter J, Shahinian A, Wakeham A, Patterson B, Ohashi PS, Mak TW. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science. 1997;275(5299):540–3.

    Article  CAS  PubMed  Google Scholar 

  68. Hochhaus A, Yan XH, Willer A, Hehlmann R, Gordon MY, Goldman JM, Melo JV. Expression of interferon regulatory factor (IRF) genes and response to interferon-alpha in chronic myeloid leukaemia. Leukemia. 1997;11(7):933–9.

    Article  CAS  PubMed  Google Scholar 

  69. Hasselbalch HC. A new era for IFN-alpha in the treatment of Philadelphia-negative chronic myeloproliferative neoplasms. Expert Rev Hematol. 2011;4(6):637–55. https://doi.org/10.1586/EHM.11.63.

    Article  CAS  PubMed  Google Scholar 

  70. Simonsson B, Hjorth-Hansen H, Bjerrum OW, Porkka K. Interferon alpha for treatment of chronic myeloid leukemia. Curr Drug Targets. 2011;12(3):420–8.

    Article  CAS  PubMed  Google Scholar 

  71. Chronic Myeloid Leukemia Trialists' Collaborative Group. Interferon alfa versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials. J Natl Cancer Inst. 1997;89(21):1616–20.

    Article  Google Scholar 

  72. Silver RT, Woolf SH, Hehlmann R, Appelbaum FR, Anderson J, Bennett C, Goldman JM, Guilhot F, Kantarjian HM, Lichtin AE, Talpaz M, Tura S. An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology. Blood. 1999;94(5):1517–36.

    CAS  PubMed  Google Scholar 

  73. Talpaz M, O'Brien S, Rose E, Gupta S, Shan J, Cortes J, Giles FJ, Faderl S, Kantarjian HM. Phase 1 study of polyethylene glycol formulation of interferon α-2B (Schering 54031) in Philadelphia chromosome-positive chronic myelogenous leukemia. Blood. 2001;98(6):1708–13.

    Article  CAS  PubMed  Google Scholar 

  74. Lipton JH, Khoroshko N, Golenkov A, Abdulkadyrov K, Nair K, Raghunadharao D, Brummendorf T, Yoo K, Bergstrom B. Phase II, randomized, multicenter, comparative study of peginterferon–α–2a (40 kD) (Pegasys®) versus interferon α-2a (Roferon®-A) in patients with treatment-naïve, chronic-phase chronic myelogenous leukemia. Leuk Lymphoma. 2007;48(3):497–505. https://doi.org/10.1080/10428190601175393. 773533619 [pii]

    Article  CAS  PubMed  Google Scholar 

  75. Michallet M, Maloisel F, Delain M, Hellmann A, Rosas A, Silver RT, Tendler C, Group PE-ICS. Pegylated recombinant interferon alpha-2b vs recombinant interferon alpha-2b for the initial treatment of chronic-phase chronic myelogenous leukemia: a phase III study. Leukemia. 2004;18(2):309–15.

    Article  CAS  PubMed  Google Scholar 

  76. Berenguer J, Gonzalez-Garcia J, Lopez-Aldeguer J, Von-Wichmann MA, Quereda C, Hernando A, Sanz J, Tural C, Ortega E, Mallolas J, Santos I, Miralles P, Montes ML, Bellon JM, Esteban H, cohort GHH. Pegylated interferon {alpha}2a plus ribavirin versus pegylated interferon {alpha}2b plus ribavirin for the treatment of chronic hepatitis C in HIV-infected patients. J Antimicrob Chemother. 2009;63(6):1256–63. https://doi.org/10.1093/jac/dkp106.

    Article  CAS  PubMed  Google Scholar 

  77. Laguno M, Cifuentes C, Murillas J, Veloso S, Larrousse M, Payeras A, Bonet L, Vidal F, Milinkovic A, Bassa A, Villalonga C, Perez I, Tural C, Martinez-Rebollar M, Calvo M, Blanco JL, Martinez E, Sanchez-Tapias JM, Gatell JM, Mallolas J. Randomized trial comparing pegylated interferon alpha-2b versus pegylated interferon alpha-2a, both plus ribavirin, to treat chronic hepatitis C in human immunodeficiency virus patients. Hepatology. 2009;49(1):22–31. https://doi.org/10.1002/hep.22598.

    Article  CAS  PubMed  Google Scholar 

  78. Scotto G, Fazio V, Fornabaio C, Tartaglia A, Di Tullio R, Saracino A, Angarano G. Early and sustained virological response in non-responders with chronic hepatitis C: a randomized open-label study of pegylated interferon-alpha-2a versus pegylated interferon-alpha-2b. Drugs. 2008;68(6):791–801.

    Article  CAS  PubMed  Google Scholar 

  79. Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, Rossiev V, Dulicek P, Illes A, Pylypenko H, Sivcheva L, Mayer J, Yablokova V, Krejcy K, Grohmann-Izay B, Hasselbalch HC, Kralovics R, Kiladjian JJ, Group P-PS. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7(3):e196–208. https://doi.org/10.1016/S2352-3026(19)30236-4.

    Article  PubMed  Google Scholar 

  80. Tremblay D, Mascarenhas J. Novel therapies in polycythemia vera. Curr Hematol Malig Rep. 2020; https://doi.org/10.1007/s11899-020-00564-7.

  81. Hasselbalch HC, Holmstrom MO. Perspectives on interferon-alpha in the treatment of polycythemia vera and related myeloproliferative neoplasms: minimal residual disease and cure? Semin Immunopathol. 2019;41(1):5–19. https://doi.org/10.1007/s00281-018-0700-2.

    Article  CAS  PubMed  Google Scholar 

  82. Jonasch E, Haluska FG. Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist. 2001;6(1):34–55. https://doi.org/10.1634/theoncologist.6-1-34.

    Article  CAS  PubMed  Google Scholar 

  83. Kluin-Nelemans HC, Buck G, le Cessie S, Richards S, Beverloo HB, Falkenburg JH, Littlewood T, Muus P, Bareford D, van der Lelie H, Green AR, Roozendaal KJ, Milne AE, Chapman CS, Shepherd P, Mrc, groups H. Randomized comparison of low-dose versus high-dose interferon-alfa in chronic myeloid leukemia: prospective collaboration of 3 joint trials by the MRC and HOVON groups. Blood. 2004;103(12):4408–15. https://doi.org/10.1182/blood-2003-10-3605.

    Article  CAS  PubMed  Google Scholar 

  84. Steegmann JL, Requena MJ, Martin-Regueira P, De La Camara R, Casado F, Salvanes FR, Fernandez Ranada JM. High incidence of autoimmune alterations in chronic myeloid leukemia patients treated with interferon-alpha. Am J Hematol. 2003;72(3):170–6. https://doi.org/10.1002/ajh.10282.

    Article  CAS  PubMed  Google Scholar 

  85. Tothova E, Kafkova A, Stecova N, Fricova M, Guman T, Svorcova E. Immune-mediated complications during interferon alpha therapy in chronic myelogenous leukemia. Neoplasma. 2002;49(2):91–4.

    CAS  PubMed  Google Scholar 

  86. Herishanu Y, Trestman S, Kirgner I, Rachmani R, Naparstek E. Autoimmune thrombocytopenia in chronic myeloid leukemia treated with interferon-alpha: differential diagnosis and possible pathogenesis. Leuk Lymphoma. 2003;44(12):2103–8. https://doi.org/10.1080/1042819031000123447.

    Article  CAS  PubMed  Google Scholar 

  87. Luskin MR. Chronic myeloid leukemia and pregnancy: patient and partner perspectives. Expert Rev Hematol. 2018;11(8):597–9. https://doi.org/10.1080/17474086.2018.1500889.

    Article  CAS  PubMed  Google Scholar 

  88. Palani R, Milojkovic D, Apperley JF. Managing pregnancy in chronic myeloid leukaemia. Ann Hematol. 2015;94(Suppl 2):S167–76. https://doi.org/10.1007/s00277-015-2317-z.

    Article  CAS  PubMed  Google Scholar 

  89. Yazdani Brojeni P, Matok I, Garcia Bournissen F, Koren G. A systematic review of the fetal safety of interferon alpha. Reprod Toxicol. 2012;33(3):265–8. https://doi.org/10.1016/j.reprotox.2011.11.003.

    Article  CAS  PubMed  Google Scholar 

  90. Pye SM, Cortes J, Ault P, Hatfield A, Kantarjian H, Pilot R, Rosti G, Apperley JF. The effects of imatinib on pregnancy outcome. Blood. 2008;111(12):5505–8. https://doi.org/10.1182/blood-2007-10-114900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Law AD, Dong Hwan Kim D, Lipton JH. Pregnancy: part of life in chronic myelogenous leukemia. Leuk Lymphoma. 2017;58(2):280–7. https://doi.org/10.1080/10428194.2016.1201571.

    Article  PubMed  Google Scholar 

  92. Lasica M, Willcox A, Burbury K, Ross DM, Branford S, Butler J, Filshie R, Januszewicz H, Joske D, Mills A, Simpson D, Tam C, Taylor K, Watson AM, Wolf M, Grigg A. The effect of tyrosine kinase inhibitor interruption and interferon use on pregnancy outcomes and long-term disease control in chronic myeloid leukemia. Leuk Lymphoma. 2019;60(7):1796–802. https://doi.org/10.1080/10428194.2018.1551533.

    Article  CAS  PubMed  Google Scholar 

  93. Milojkovic D, Apperley JF. How I treat leukemia during pregnancy. Blood. 2014;123(7):974–84. https://doi.org/10.1182/blood-2013-08-283580.

    Article  CAS  PubMed  Google Scholar 

  94. Berman E. Pregnancy in patients with chronic myeloid leukemia. J Natl Compr Cancer Netw. 2018;16(5S):660–2. https://doi.org/10.6004/jnccn.2018.0035.

    Article  Google Scholar 

  95. Kantarjian HM, O'Brien S, Cortes JE, Shan J, Giles FJ, Rios MB, Faderl SH, Wierda WG, Ferrajoli A, Verstovsek S, Keating MJ, Freireich EJ, Talpaz M. Complete cytogenetic and molecular responses to interferon-alpha-based therapy for chronic myelogenous leukemia are associated with excellent long-term prognosis. Cancer. 2003;97(4):1033–41.

    Article  CAS  PubMed  Google Scholar 

  96. Bonifazi F, de Vivo A, Rosti G, Guilhot F, Guilhot J, Trabacchi E, Hehlmann R, Hochhaus A, Shepherd PC, Steegmann JL, Kluin-Nelemans HC, Thaler J, Simonsson B, Louwagie A, Reiffers J, Mahon FX, Montefusco E, Alimena G, Hasford J, Richards S, Saglio G, Testoni N, Martinelli G, Tura S, Baccarani M. Chronic myeloid leukemia and interferon-α: a study of complete cytogenetic responders. Blood. 2001;98(10):3074–81.

    Article  CAS  PubMed  Google Scholar 

  97. Malagola M, Breccia M, Skert C, Cancelli V, Soverini S, Iacobucci I, Cattina F, Liberati AM, Tiribelli M, Annunziata M, Trabacchi E, De Vivo A, Castagnetti F, Martinelli G, Fogli M, Stagno F, Pica G, Iurlo A, Pregno P, Abruzzese E, Pardini S, Bocchia M, Russo S, Pierri I, Lunghi M, Barulli S, Merante S, Mandelli F, Alimena G, Rosti G, Baccarani M, Russo D. Long term outcome of Ph+ CML patients achieving complete cytogenetic remission with interferon based therapy moving from interferon to imatinib era. Am J Hematol. 2014;89(2):119–24. https://doi.org/10.1002/ajh.23593.

    Article  CAS  PubMed  Google Scholar 

  98. Mahon FX, Delbrel X, Cony-Makhoul P, Faberes C, Boiron JM, Barthe C, Bilhou-Nabera C, Pigneux A, Marit G, Reiffers J. Follow-up of complete cytogenetic remission in patients with chronic myeloid leukemia after cessation of interferon alfa. J Clin Oncol. 2002;20(1):214–20.

    Article  CAS  PubMed  Google Scholar 

  99. Veneri D, Tecchio C, De Matteis G, Paviati E, Benati M, Franchini M, Pizzolo G. Long-term persistence of molecular response after discontinuation of interferon-alpha in two patients with chronic myeloid leukaemia. Blood Transfus = Trasfusione del sangue. 2012;10(2):233–4.

    PubMed  Google Scholar 

  100. Talpaz M, Estrov Z, Kantarjian H, Ku S, Foteh A, Kurzrock R. Persistence of dormant leukemic progenitors during interferon-induced remission in chronic myelogenous leukemia. Analysis by polymerase chain reaction of individual colonies. J Clin Invest. 1994;94(4):1383–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Latagliata R, Romano A, Mancini M, Breccia M, Carmosino I, Vozella F, Montagna C, Volpicelli P, De Angelis F, Petrucci L, Serrao A, Molica M, Salaroli A, Diverio D, Alimena G. Discontinuation of alpha-interferon treatment in patients with chronic myeloid leukemia in long-lasting complete molecular response. Leuk Lymphoma. 2016;57(1):99–102. https://doi.org/10.3109/10428194.2015.1043548.

    Article  CAS  PubMed  Google Scholar 

  102. Hochhaus A, Reiter A, Saussele S, Reichert A, Emig M, Kaeda J, Schultheis B, Berger U, Shepherd PC, Allan NC, Hehlmann R, Goldman JM, Cross NC. Molecular heterogeneity in complete cytogenetic responders after interferon-α therapy for chronic myelogenous leukemia: low levels of minimal residual disease are associated with continuing remission. Blood. 2000;95(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  103. Chomel JC, Brizard F, Veinstein A, Rivet J, Sadoun A, Kitzis A, Guilhot F, Brizard A. Persistence of BCR-ABL genomic rearrangement in chronic myeloid leukemia patients in complete and sustained cytogenetic remission after interferon-alpha therapy or allogeneic bone marrow transplantation. Blood. 2000;95(2):404–8.

    Article  CAS  PubMed  Google Scholar 

  104. Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, Legros L, Charbonnier A, Guerci A, Varet B, Etienne G, Reiffers J, Rousselot P. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35. https://doi.org/10.1016/S1470-2045(10)70233-3.

    Article  CAS  PubMed  Google Scholar 

  105. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290–3.

    Article  CAS  PubMed  Google Scholar 

  106. de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 1982;300(5894):765–7.

    Article  PubMed  Google Scholar 

  107. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315(6020):550–4.

    Article  CAS  PubMed  Google Scholar 

  108. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247(4944):824–30.

    Article  CAS  PubMed  Google Scholar 

  109. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature. 1990;344(6263):251–3.

    Article  CAS  PubMed  Google Scholar 

  110. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ, Investigators I. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004.

    Article  CAS  PubMed  Google Scholar 

  111. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, Baccarani M, Deininger MW, Cervantes F, Fujihara S, Ortmann CE, Menssen HD, Kantarjian H, O'Brien SG, Druker BJ, Investigators I. Long-term outcomes of Imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376(10):917–27. https://doi.org/10.1056/NEJMoa1609324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Deininger M, O'Brien SG, Guilhot F, Goldman JM, Hochhaus A, Hughes TP, Radich JP, Hatfield AK, Mone M, Filian J, Reynolds J, Gathmann I, Larson RA, Druker BJ. International randomized study of interferon vs STI571 (IRIS) 8-year follow up: sustained survival and low risk for progression or events in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) treated with imatinib. Blood. 2009;114:22. (abstract [1126])

    Article  Google Scholar 

  113. Hochhaus A, O'Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L, Goldman JM, Muller MC, Radich JP, Rudoltz M, Mone M, Gathmann I, Hughes TP, Larson RA, Investigators I. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia. 2009;23(6):1054–61. https://doi.org/10.1038/leu.2009.38.

    Article  CAS  PubMed  Google Scholar 

  114. Hehlmann R, Lauseker M, Jung-Munkwitz S, Leitner A, Muller MC, Pletsch N, Proetel U, Haferlach C, Schlegelberger B, Balleisen L, Hanel M, Pfirrmann M, Krause SW, Nerl C, Pralle H, Gratwohl A, Hossfeld DK, Hasford J, Hochhaus A, Saussele S. Tolerability-adapted imatinib 800 mg/d versus 400 mg/d versus 400 mg/d plus interferon-alpha in newly diagnosed chronic myeloid leukemia. J Clin Oncol. 2011;29(12):1634–42. https://doi.org/10.1200/JCO.2010.32.0598.

    Article  CAS  PubMed  Google Scholar 

  115. Hehlmann R, Muller MC, Lauseker M, Hanfstein B, Fabarius A, Schreiber A, Proetel U, Pletsch N, Pfirrmann M, Haferlach C, Schnittger S, Einsele H, Dengler J, Falge C, Kanz L, Neubauer A, Kneba M, Stegelmann F, Pfreundschuh M, Waller CF, Spiekermann K, Baerlocher GM, Ehninger G, Heim D, Heimpel H, Nerl C, Krause SW, Hossfeld DK, Kolb HJ, Hasford J, Saussele S, Hochhaus A. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol. 2014;32(5):415–23. https://doi.org/10.1200/JCO.2013.49.9020.

    Article  CAS  PubMed  Google Scholar 

  116. Hehlmann R, Lauseker M, Saussele S, Pfirrmann M, Krause S, Kolb HJ, Neubauer A, Hossfeld DK, Nerl C, Gratwohl A, Baerlocher GM, Heim D, Brummendorf TH, Fabarius A, Haferlach C, Schlegelberger B, Muller MC, Jeromin S, Proetel U, Kohlbrenner K, Voskanyan A, Rinaldetti S, Seifarth W, Spiess B, Balleisen L, Goebeler MC, Hanel M, Ho A, Dengler J, Falge C, Kanz L, Kremers S, Burchert A, Kneba M, Stegelmann F, Kohne CA, Lindemann HW, Waller CF, Pfreundschuh M, Spiekermann K, Berdel WE, Muller L, Edinger M, Mayer J, Beelen DW, Bentz M, Link H, Hertenstein B, Fuchs R, Wernli M, Schlegel F, Schlag R, de Wit M, Trumper L, Hebart H, Hahn M, Thomalla J, Scheid C, Schafhausen P, Verbeek W, Eckart MJ, Gassmann W, Pezzutto A, Schenk M, Brossart P, Geer T, Bildat S, Schafer E, Hochhaus A, Hasford J. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia. 2017;31(11):2398–406. https://doi.org/10.1038/leu.2017.253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Preudhomme C, Guilhot J, Nicolini FE, Guerci-Bresler A, Rigal-Huguet F, Maloisel F, Coiteux V, Gardembas M, Berthou C, Vekhoff A, Rea D, Jourdan E, Allard C, Delmer A, Rousselot P, Legros L, Berger M, Corm S, Etienne G, Roche-Lestienne C, Eclache V, Mahon FX, Guilhot F. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N Engl J Med. 2010;363(26):2511–21. https://doi.org/10.1056/NEJMoa1004095.

    Article  CAS  PubMed  Google Scholar 

  118. Johnson-Ansah H, Guilhot J, Rousselot P, Rea D, Legros L, Rigal-Huguet F, Nicolini FE, Mahon FX, Preudhomme C, Guilhot F. Tolerability and efficacy of pegylated interferon-alpha-2a in combination with imatinib for patients with chronic-phase chronic myeloid leukemia. Cancer. 2013;119(24):4284–9. https://doi.org/10.1002/cncr.28328.

    Article  CAS  PubMed  Google Scholar 

  119. Simonsson B, Gedde-Dahl T, Markevärn B, Remes K, Stentoft J, Almqvist A, Bjoreman M, Flogegard M, Koskenveesa P, Lindblom A, Malm C, Mustjoki S, Myhr-Eriksson K, Ohm L, Rasanen A, Sinisalo M, Sjalander A, Stromberg U, Weiss Bjerrum O, Ehrencrona H, Gruber F, Kairisto V, Olsson K, Sandin F, Nagler A, Lanng Nielsen J, Hjorth-Hansen H, Porkka K. Combination of pegylated IFN-α2b with imatinib increases molecular response rates in patients with low- or intermediate-risk chronic myeloid leukemia. Blood. 2011;118:3228–35. https://doi.org/10.1182/blood-2011-02-336685.

    Article  CAS  PubMed  Google Scholar 

  120. Cortes J, Quintas-Cardama A, Jones D, Ravandi F, Garcia-Manero G, Verstovsek S, Koller C, Hiteshew J, Shan J, O'Brien S, Kantarjian H. Immune modulation of minimal residual disease in early chronic phase chronic myelogenous leukemia: a randomized trial of frontline high-dose imatinib mesylate with or without pegylated interferon alpha-2b and granulocyte-macrophage colony-stimulating factor. Cancer. 2011;117(3):572–80. https://doi.org/10.1002/cncr.25438.

    Article  CAS  PubMed  Google Scholar 

  121. Palandri F, Iacobucci I, Castagnetti F, Testoni N, Poerio A, Amabile M, Breccia M, Intermesoli T, Iuliano F, Rege-Cambrin G, Tiribelli M, Miglino M, Pane F, Saglio G, Martinelli G, Rosti G, Baccarani M. Front-line treatment of Philadelphia positive chronic myeloid leukemia with imatinib and interferon-α: 5-year outcome. Haematologica. 2008;93(5):770–4.

    Article  CAS  PubMed  Google Scholar 

  122. Baccarani M, Martinelli G, Rosti G, Trabacchi E, Testoni N, Bassi S, Amabile M, Soverini S, Castagnetti F, Cilloni D, Izzo B, de Vivo A, Messa E, Bonifazi F, Poerio A, Luatti S, Giugliano E, Alberti D, Fincato G, Russo D, Pane F, Saglio G. Imatinib and pegylated human recombinant interferon-α2b in early chronic-phase chronic myeloid leukemia. Blood. 2004;104(13):4245–51.

    Article  CAS  PubMed  Google Scholar 

  123. Palandri F, Castagnetti F, Iacobucci I, Martinelli G, Amabile M, Gugliotta G, Poerio A, Testoni N, Breccia M, Bocchia M, Crugnola M, Rege-Cambrin G, Martino B, Pierri I, Radaelli F, Specchia G, Pane F, Saglio G, Rosti G, Baccarani M. The response to imatinib and interferon-α is more rapid than the response to imatinib alone: a retrospective analysis of 495 Philadelphia-positive chronic myeloid leukemia patients in early chronic phase. Haematologica. 2010;95(8):1415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chamoun K, Kantarjian H, Atallah R, Gonzalez GN, Issa GC, Rios MB, Garcia-Manero G, Borthakur G, Ravandi F, Jain N, Daver N, Konopleva M, DiNardo CD, Kadia T, Pemmaraju N, Jabbour E, Cortes J. Tyrosine kinase inhibitor discontinuation in patients with chronic myeloid leukemia: a single-institution experience. J Hematol Oncol. 2019;12(1):1. https://doi.org/10.1186/s13045-018-0686-1.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Webster JA, Ferguson A, Gocke C, Jones RJ, Levitsky H, Smith BD. A randomized phase II trial of interferon (IFN)/GM-CSF versus K562/GM-CSF vaccination in chronic phase CML patients on frontline tyrosine kinase inhibitor (TKI) therapy: potential of IFN to enhance molecular remissions. Blood. 2016;128(22):3088. https://doi.org/10.1182/blood.V128.22.3088.3088.

    Article  Google Scholar 

  126. Hjorth-Hansen H, Stentoft J, Richter J, Koskenvesa P, Hoglund M, Dreimane A, Porkka K, Gedde-Dahl T, Gjertsen BT, Gruber FX, Stenke L, Eriksson KM, Markevarn B, Lubking A, Vestergaard H, Udby L, Bjerrum OW, Persson I, Mustjoki S, Olsson-Stromberg U. Safety and efficacy of the combination of pegylated interferon-alpha2b and dasatinib in newly diagnosed chronic-phase chronic myeloid leukemia patients. Leukemia. 2016;30(9):1853–60. https://doi.org/10.1038/leu.2016.121.

    Article  CAS  PubMed  Google Scholar 

  127. Nicolini FE, Etienne G, Huguet F, Guerci-Bresler A, Charbonnier A, Escoffre-Barbe M, Dubruille V, Johnson-Ansah H, Legros L, Coiteux V, Cony-Makhoul P, Lenain P, Roy L, Rousselot P, Guyotat D, Ianotto J-C, Gardembas M, Deconinck E, Larosa F, Caillot D, Turlure P, Courby S, Quittet P, Hermet E, Ame S, Lapusan S, Deloire A, Morisset S, Etienne M, Rea D, Dulucq S, Mahon F-X. The combination of Nilotinib + Pegylated IFN Alpha 2a provides somewhat higher cumulative incidence rates of MR4.5 at M36 versus nilotinib alone in newly diagnosed CP CML patients. Updated Results of the Petals Phase III National Study. Blood. 2019;134(Supplement_1):494. https://doi.org/10.1182/blood-2019-123674.

    Article  Google Scholar 

  128. de Lavallade H, Jackson S, Kizilors A, Etienne G, Huguet F, Guerci-Bresler A, Rea D, Chollet C, Morisset S, Robbesyn F, Mahon F-X, Dulucq S, Nicolini FE. Prospective evaluation of ABL kinase domain mutational analysis by next-generation-sequencing in newly diagnosed CP CML patients undergoing first-line treatment with Nilotinib alone or Nilotinib + Pegylated interferon-α2a in a prospective phase III trial. Blood. 2019;134(Supplement_1):664. https://doi.org/10.1182/blood-2019-125108.

    Article  Google Scholar 

  129. Hochhaus A, Burchert A, Saussele S, Baerlocher GM, Brümmendorf TH, La Rosée P, Heim D, Krause SW, le Coutre PD, Niederwieser D, Lange T, Fabarius A, Hänel M, Stegelmann F, Mayer J, Gil A, Himsel D, Hasford J, Hehlmann R, Ernst T, Fabisch C, Pfirrmann M. Nilotinib vs nilotinib plus pegylated interferon α (peg-IFN) induction and Nilotinib or peg-IFN maintenance therapy for newly diagnosed BCR-ABL1 positive chronic myeloid Leukemia patients in chronic phase (TIGER study): The addition of peg-IFN is associated with higher rates of deep molecular response. Blood. 2019;134(Supplement_1):495. https://doi.org/10.1182/blood-2019-130043.

    Article  Google Scholar 

  130. Nicolini FE, Etienne G, Dubruille V, Roy L, Huguet F, Legros L, Giraudier S, Coiteux V, Guerci-Bresler A, Lenain P, Cony-Makhoul P, Gardembas M, Hermet E, Rousselot P, Ame S, Gagnieu MC, Pivot C, Hayette S, Maguer-Satta V, Etienne M, Dulucq S, Rea D, Mahon FX. Nilotinib and peginterferon alfa-2a for newly diagnosed chronic-phase chronic myeloid leukaemia (NiloPeg): a multicentre, non-randomised, open-label phase 2 study. Lancet Haematol. 2015;2(1):e37–46. https://doi.org/10.1016/S2352-3026(14)00027-1.

    Article  PubMed  Google Scholar 

  131. Nicolini FE, Etienne G, Huguet F, Guerci-Bresler A, Charbonnier A, Escoffre-Barbe M, Dubruille V, Johnson-Ansah H, Legros L, Coiteux V, Cony-Makhoul P, Lenain P, Roy L, Rousselot P, Guyotat D, Ianotto J-C, Gardembas M, Larosa F, Caillot D, Turlure P, Courby S, Quittet P, Hermet E, Ame S, Lapusan S, Schwiertz V, Morisset S, Etienne M, Rea D, Dulucq S, Mahon F-X. Nilotinib versus Nilotinib combined to Pegylated-interferon alfa 2a in first-line chronic phase chronic myelogenous Leukemia patients. Interim analysis of a phase III trial. Blood. 2017;130(Supplement 1):899. https://doi.org/10.1182/blood.V130.Suppl_1.899.899.

    Article  Google Scholar 

  132. Yeung DT, Grigg AP, Shanmuganathan N, Cunningham I, Shortt J, Rowling P, Reynolds J, Cushion R, Harrup RA, Ross DM, Kipp D, Mills AK, Arthur CK, Schwarer AP, Jackson K, Viiala N, Weinkove R, Yong ASM, White DL, Branford S, Hughes TP, ALLG OBot. Combination of Nilotinib and Pegylated Interferon Alfa-2b Results in High Molecular Response Rates in Chronic Phase CML: Interim Results of the ALLG CML 11 Pinnacle Study. Blood. 2018;132(Supplement 1):459. https://doi.org/10.1182/blood-2018-99-110569.

    Article  Google Scholar 

  133. Roy L, Chomel J-C, Guilhot J, Guerci-Bresler A, Escoffre-Barbe M, Giraudier S, Charbonnier A, Dubruille V, Huguet F, Johnson-Ansah H, Lenain P, Amé S, Etienne G, Nicolini FE, Rea D, Cony-Makhoul P, Courby S, Ianotto J-C, Legros L, Delain M, Coiteux V, Hermet E, Gardembas M, Molimard M, Cayuela J-M, Thibaud M, Duranton S, Mahon F-X, Rousselot P, Guilhot F. Combination of dasatinib and peg-interferon alpha 2b in chronic phase chronic myeloid leukemia (CP-CML) first line: preliminary results of a phase II trial, from the French Intergroup of CML (fi-LMC). Blood. 2015;126(23):134. https://doi.org/10.1182/blood.V126.23.134.134.

    Article  Google Scholar 

  134. Bedi A, Griffin CA, Barber JP, Vala MS, Hawkins AL, Sharkis SJ, Zehnbauer BA, Jones RJ. Growth factor-mediated terminal differentiation of chronic myeloid leukemia. Cancer Res. 1994;54(21):5535–8.

    CAS  PubMed  Google Scholar 

  135. Angstreich GR, Matsui W, Huff CA, Vala MS, Barber J, Hawkins AL, Griffin CA, Smith BD, Jones RJ. Effects of imatinib and interferon on primitive chronic myeloid leukaemia progenitors. Br J Haematol. 2005;130(3):373–81.

    Article  CAS  PubMed  Google Scholar 

  136. Paquette RL, Hsu N, Said J, Mohammed M, Rao NP, Shih G, Schiller G, Sawyers C, Glaspy JA. Interferon-α induces dendritic cell differentiation of CML mononuclear cells in vitro and in vivo. Leukemia. 2002;16(8):1484–9.

    Article  CAS  PubMed  Google Scholar 

  137. Zeidner JF, Gladstone DE, Zahurak M, Matsui WH, Gocke C, Jones RJ, Smith BD. Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances the clinical responses to interferon-alpha (IFN) in newly diagnosed chronic myeloid leukemia (CML). Leuk Res. 2014;38(8):886–90. https://doi.org/10.1016/j.leukres.2014.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cortes J, Kantarjian H, O'Brien S, Kurzrock R, Keating M, Talpaz M. GM-CSF can improve the cytogenetic response obtained with interferon-alpha therapy in patients with chronic myelogenous leukemia. Leukemia. 1998;12(6):860–4.

    Article  CAS  PubMed  Google Scholar 

  139. El Eit RM, Iskandarani AN, Saliba JL, Jabbour MN, Mahfouz RA, Bitar NM, Ayoubi HR, Zaatari GS, Mahon FX, De The HB, Bazarbachi AA, Nasr RR. Effective targeting of chronic myeloid leukemia initiating activity with the combination of arsenic trioxide and interferon alpha. Int J Cancer. 2014;134(4):988–96. https://doi.org/10.1002/ijc.28427.

    Article  CAS  PubMed  Google Scholar 

  140. El Eit R, Itani AR, Nassar F, Rasbieh N, Jabbour M, Santina A, Zaatari G, Mahon FX, Bazarbachi A, Nasr R. Antitumor efficacy of arsenic/interferon in preclinical models of chronic myeloid leukemia resistant to tyrosine kinase inhibitors. Cancer. 2019;125(16):2818–28. https://doi.org/10.1002/cncr.32130.

    Article  CAS  PubMed  Google Scholar 

  141. Burchert A, Saussele S, Eigendorff E, Muller MC, Sohlbach K, Inselmann S, Schutz C, Metzelder SK, Ziermann J, Kostrewa P, Hoffmann J, Hehlmann R, Neubauer A, Hochhaus A. Interferon alpha 2 maintenance therapy may enable high rates of treatment discontinuation in chronic myeloid leukemia. Leukemia. 2015;29(6):1331–5. https://doi.org/10.1038/leu.2015.45.

    Article  CAS  PubMed  Google Scholar 

  142. Hardan I, Stanevsky A, Volchek Y, Tohami T, Amariglio N, Trakhtenbrot L, Koren-Michowitz M, Shimoni A, Nagler A. Treatment with interferon alpha prior to discontinuation of imatinib in patients with chronic myeloid leukemia. Cytokine. 2012;57(2):290–3.

    Article  CAS  PubMed  Google Scholar 

  143. Bezerra ED, Flowers ME, Onstad LE, Chielens D, Radich J, Higano CS. A phase 2 study of alpha interferon for molecularly measurable residual disease in chronic myeloid leukemia after allogeneic hematopoietic cell transplantation. Leuk Lymphoma. 2019;60(11):2754–61. https://doi.org/10.1080/10428194.2019.1605508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kiladjian JJ, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M, Bellucci S, Grandchamp B, Chomienne C, Fenaux P. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112(8):3065–72. https://doi.org/10.1182/blood-2008-03-143537.

    Article  CAS  PubMed  Google Scholar 

  145. Kiladjian JJ, Cassinat B, Turlure P, Cambier N, Roussel M, Bellucci S, Menot ML, Massonnet G, Dutel JL, Ghomari K, Rousselot P, Grange MJ, Chait Y, Vainchenker W, Parquet N, Abdelkader-Aljassem L, Bernard JF, Rain JD, Chevret S, Chomienne C, Fenaux P. High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood. 2006;108(6):2037–40. https://doi.org/10.1182/blood-2006-03-009860.

    Article  CAS  PubMed  Google Scholar 

  146. Quintas-Cardama A, Kantarjian H, Manshouri T, Luthra R, Estrov Z, Pierce S, Richie MA, Borthakur G, Konopleva M, Cortes J, Verstovsek S. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27(32):5418–24. https://doi.org/10.1200/JCO.2009.23.6075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Quintas-Cardama A, Abdel-Wahab O, Manshouri T, Kilpivaara O, Cortes J, Roupie AL, Zhang SJ, Harris D, Estrov Z, Kantarjian H, Levine RL, Verstovsek S. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon alpha-2a. Blood. 2013;122(6):893–901. https://doi.org/10.1182/blood-2012-07-442012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Stauffer Larsen T, Iversen KF, Hansen E, Mathiasen AB, Marcher C, Frederiksen M, Larsen H, Helleberg I, Riley CH, Bjerrum OW, Ronnov-Jessen D, Moller MB, de Stricker K, Vestergaard H, Hasselbalch HC. Long term molecular responses in a cohort of Danish patients with essential thrombocythemia, polycythemia vera and myelofibrosis treated with recombinant interferon alpha. Leuk Res. 2013;37(9):1041–5. https://doi.org/10.1016/j.leukres.2013.06.012.

    Article  CAS  PubMed  Google Scholar 

  149. Larsen TS, Bjerrum OW, Pallisgaard N, Andersen MT, Moller MB, Hasselbalch HC. Sustained major molecular response on interferon alpha-2b in two patients with polycythemia vera. Ann Hematol. 2008;87(10):847–50. https://doi.org/10.1007/s00277-008-0498-4.

    Article  CAS  PubMed  Google Scholar 

  150. Larsen TS, Moller MB, de Stricker K, Norgaard P, Samuelsson J, Marcher C, Andersen MT, Bjerrum OW, Hasselbalch HC. Minimal residual disease and normalization of the bone marrow after long-term treatment with alpha-interferon2b in polycythemia vera. A report on molecular response patterns in seven patients in sustained complete hematological remission. Hematology. 2009;14(6):331–4. https://doi.org/10.1179/102453309X12473408860587.

    Article  CAS  PubMed  Google Scholar 

  151. Utke Rank C, Weis Bjerrum O, Larsen TS, Kjaer L, de Stricker K, Riley CH, Hasselbalch HC. Minimal residual disease after long-term interferon-alpha2 treatment: a report on hematological, molecular and histomorphological response patterns in 10 patients with essential thrombocythemia and polycythemia vera. Leuk Lymphoma. 2016;57(2):348–54. https://doi.org/10.3109/10428194.2015.1049171.

    Article  CAS  PubMed  Google Scholar 

  152. Mascarenhas J, Kosiorek HE, Prchal JT, Rambaldi A, Berenzon D, Yacoub A, Harrison CN, McMullin MF, Vannucchi AM, Ewing J, O'Connell CL, Kiladjian J-J, Mead AJ, Winton EF, Leibowitz DS, De Stefano V, Arcasoy MO, Kessler CM, Catchatourian R, Rondelli D, Silver RT, Bacigalupo A, Nagler A, Kremyanskaya M, Sandy L, Salama ME, Najfeld V, Tripodi J, Weinberg RS, Price L, Goldberg JD, Rampal RK, Mesa RA, Dueck AC, Hoffman R. Results of the myeloproliferative neoplasms - research consortium (MPN-RC) 112 randomized trial of Pegylated interferon alfa-2a (PEG) versus hydroxyurea (HU) therapy for the treatment of high risk Polycythemia Vera (PV) and high risk essential thrombocythemia (ET). Blood. 2018;132(Supplement 1):577. https://doi.org/10.1182/blood-2018-99-111946.

    Article  Google Scholar 

  153. Silver RT, Vandris K, Goldman JJ. Recombinant interferon-alpha may retard progression of early primary myelofibrosis: a preliminary report. Blood. 2011;117(24):6669–72. https://doi.org/10.1182/blood-2010-11-320069.

    Article  CAS  PubMed  Google Scholar 

  154. Gowin K, Thapaliya P, Samuelson J, Harrison C, Radia D, Andreasson B, Mascarenhas J, Rambaldi A, Barbui T, Rea CJ, Camoriano J, Gentry A, Kiladjian JJ, O'Connell C, Mesa R. Experience with pegylated interferon alpha-2a in advanced myeloproliferative neoplasms in an international cohort of 118 patients. Haematologica. 2012;97(10):1570–3. https://doi.org/10.3324/haematol.2011.061390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ianotto JC, Kiladjian JJ, Demory JL, Roy L, Boyer F, Rey J, Dupriez B, Berthou C, Abgrall JF. PEG-IFN-alpha-2a therapy in patients with myelofibrosis: a study of the French Groupe d'Etudes des Myelofibroses (GEM) and France Intergroupe des syndromes Myeloproliferatifs (FIM). Br J Haematol. 2009;146(2):223–5. https://doi.org/10.1111/j.1365-2141.2009.07745.x.

    Article  CAS  PubMed  Google Scholar 

  156. Ianotto JC, Boyer-Perrard F, Gyan E, Laribi K, Cony-Makhoul P, Demory JL, De Renzis B, Dosquet C, Rey J, Roy L, Dupriez B, Knoops L, Legros L, Malou M, Hutin P, Ranta D, Schoenwald M, Andreoli A, Abgrall JF, Kiladjian JJ. Efficacy and safety of pegylated-interferon alpha-2a in myelofibrosis: a study by the FIM and GEM French cooperative groups. Br J Haematol. 2013;162(6):783–91. https://doi.org/10.1111/bjh.12459.

    Article  CAS  PubMed  Google Scholar 

  157. Mikkelsen SU, Kjaer L, Bjorn ME, Knudsen TA, Sorensen AL, Andersen CBL, Bjerrum OW, Brochmann N, Fassi DE, Kruse TA, Larsen TS, Mourits-Andersen HT, Nielsen CH, Pallisgaard N, Thomassen M, Skov V, Hasselbalch HC. Safety and efficacy of combination therapy of interferon-alpha2 and ruxolitinib in polycythemia vera and myelofibrosis. Cancer Med. 2018;7(8):3571–81. https://doi.org/10.1002/cam4.1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fish EN, Platanias LC. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol Cancer Res. 2014;12(12):1691–703. https://doi.org/10.1158/1541-7786.MCR-14-0450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res. 2011;17(9):2619–27. https://doi.org/10.1158/1078-0432.CCR-10-1114.

    Article  CAS  PubMed  Google Scholar 

  160. Bio-Techne (2018) Type I interferon signaling pathways. Available via R&D Systems. https://www.rndsystems.com/pathways/type-i-interferon-signaling-pathways.

  161. Liu Y, George CX, Patterson JB, Samuel CE. Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J Biol Chem. 1997;272(7):4419–28.

    Article  CAS  PubMed  Google Scholar 

  162. Cheon H, Borden EC, Stark GR. Interferons and their stimulated genes in the tumor microenvironment. Semin Oncol. 2014;41(2):156–73. https://doi.org/10.1053/j.seminoncol.2014.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Guenzi E, Topolt K, Lubeseder-Martellato C, Jorg A, Naschberger E, Benelli R, Albini A, Sturzl M. The guanylate binding protein-1 GTPase controls the invasive and angiogenic capability of endothelial cells through inhibition of MMP-1 expression. EMBO J. 2003;22(15):3772–82. https://doi.org/10.1093/emboj/cdg382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Raffaella R, Gioia D, De Andrea M, Cappello P, Giovarelli M, Marconi P, Manservigi R, Gariglio M, Landolfo S. The interferon-inducible IFI16 gene inhibits tube morphogenesis and proliferation of primary, but not HPV16 E6/E7-immortalized human endothelial cells. Exp Cell Res. 2004;293(2):331–45.

    Article  CAS  PubMed  Google Scholar 

  165. Martensen PM, Sogaard TM, Gjermandsen IM, Buttenschon HN, Rossing AB, Bonnevie-Nielsen V, Rosada C, Simonsen JL, Justesen J. The interferon alpha induced protein ISG12 is localized to the nuclear membrane. Eur J Biochem. 2001;268(22):5947–54.

    Article  CAS  PubMed  Google Scholar 

  166. Cheon H, Holvey-Bates EG, Schoggins JW, Forster S, Hertzog P, Imanaka N, Rice CM, Jackson MW, Junk DJ, Stark GR. IFNbeta-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J. 2013;32(20):2751–63. https://doi.org/10.1038/emboj.2013.203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sarkar SN, Sen GC. Novel functions of proteins encoded by viral stress-inducible genes. Pharmacol Ther. 2004;103(3):245–59. https://doi.org/10.1016/j.pharmthera.2004.07.007.

    Article  CAS  PubMed  Google Scholar 

  168. Wang C, Pflugheber J, Sumpter R Jr, Sodora DL, Hui D, Sen GC, Gale M Jr. Alpha interferon induces distinct translational control programs to suppress hepatitis C virus RNA replication. J Virol. 2003;77(7):3898–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lai KC, Liu CJ, Chang KW, Lee TC. Depleting IFIT2 mediates atypical PKC signaling to enhance the migration and metastatic activity of oral squamous cell carcinoma cells. Oncogene. 2013;32(32):3686–97. https://doi.org/10.1038/onc.2012.384.

    Article  CAS  PubMed  Google Scholar 

  170. Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity. 2007;26(4):503–17. https://doi.org/10.1016/j.immuni.2007.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Honda K, Taniguchi T. IRFs: master regulators of signalling by toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol. 2006;6(9):644–58. https://doi.org/10.1038/nri1900.

    Article  CAS  PubMed  Google Scholar 

  172. Khoo JJ, Forster S, Mansell A. Toll-like receptors as interferon-regulated genes and their role in disease. J Interferon Cytokine Res. 2011;31(1):13–25. https://doi.org/10.1089/jir.2010.0095.

    Article  CAS  PubMed  Google Scholar 

  173. Ritchie KJ, Hahn CS, Kim KI, Yan M, Rosario D, Li L, de la Torre JC, Zhang DE. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med. 2004;10(12):1374–8. https://doi.org/10.1038/nm1133.

    Article  CAS  PubMed  Google Scholar 

  174. Potu H, Sgorbissa A, Brancolini C. Identification of USP18 as an important regulator of the susceptibility to IFN-alpha and drug-induced apoptosis. Cancer Res. 2010;70(2):655–65. https://doi.org/10.1158/0008-5472.CAN-09-1942.

    Article  CAS  PubMed  Google Scholar 

  175. D'Cunha J, Knight E Jr, Haas AL, Truitt RL, Borden EC. Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci U S A. 1996;93(1):211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Schiavoni G, Mattei F, Gabriele L. Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response. Front Immunol. 2013;4:483. https://doi.org/10.3389/fimmu.2013.00483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cresswell P. Intracellular surveillance: controlling the assembly of MHC class I-peptide complexes. Traffic. 2000;1(4):301–5.

    Article  CAS  PubMed  Google Scholar 

  178. Mushinski JF, Nguyen P, Stevens LM, Khanna C, Lee S, Chung EJ, Lee MJ, Kim YS, Linehan WM, Horisberger MA, Trepel JB. Inhibition of tumor cell motility by the interferon-inducible GTPase MxA. J Biol Chem. 2009;284(22):15206–14. https://doi.org/10.1074/jbc.M806324200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhou A, Paranjape J, Brown TL, Nie H, Naik S, Dong B, Chang A, Trapp B, Fairchild R, Colmenares C, Silverman RH. Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J. 1997;16(21):6355–63. https://doi.org/10.1093/emboj/16.21.6355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Malathi K, Dong B, Gale M Jr, Silverman RH. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature. 2007;448(7155):816–9. https://doi.org/10.1038/nature06042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Castelli JC, Hassel BA, Wood KA, Li XL, Amemiya K, Dalakas MC, Torrence PF, Youle RJ. A study of the interferon antiviral mechanism: apoptosis activation by the 2-5A system. J Exp Med. 1997;186(6):967–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR, Hovanessian AG. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell. 1990;62(2):379–90.

    Article  CAS  PubMed  Google Scholar 

  183. Williams BR. PKR; a sentinel kinase for cellular stress. Oncogene. 1999;18(45):6112–20. https://doi.org/10.1038/sj.onc.1203127.

    Article  CAS  PubMed  Google Scholar 

  184. Zhou Q, Zhao J, Al-Zoghaibi F, Zhou A, Wiedmer T, Silverman RH, Sims PJ. Transcriptional control of the human plasma membrane phospholipid scramblase 1 gene is mediated by interferon-alpha. Blood. 2000;95(8):2593–9.

    Article  CAS  PubMed  Google Scholar 

  185. Silverman RH, Halloum A, Zhou A, Dong B, Al-Zoghaibi F, Kushner D, Zhou Q, Zhao J, Wiedmer T, Sims PJ. Suppression of ovarian carcinoma cell growth in vivo by the interferon-inducible plasma membrane protein, phospholipid scramblase 1. Cancer Res. 2002;62(2):397–402.

    CAS  PubMed  Google Scholar 

  186. Cheng X, Liu Y, Chu H, Kao HY. Promyelocytic leukemia protein (PML) regulates endothelial cell network formation and migration in response to tumor necrosis factor alpha (TNFalpha) and interferon alpha (IFNalpha). J Biol Chem. 2012;287(28):23356–67. https://doi.org/10.1074/jbc.M112.340505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Johnsen A, France J, Sy MS, Harding CV. Down-regulation of the transporter for antigen presentation, proteasome subunits, and class I major histocompatibility complex in tumor cell lines. Cancer Res. 1998;58(16):3660–7.

    CAS  PubMed  Google Scholar 

  188. Lattanzi L, Rozera C, Marescotti D, D'Agostino G, Santodonato L, Cellini S, Belardelli F, Gavioli R, Ferrantini M. IFN-alpha boosts epitope cross-presentation by dendritic cells via modulation of proteasome activity. Immunobiology. 2011;216(5):537–47. https://doi.org/10.1016/j.imbio.2010.10.003.

    Article  CAS  PubMed  Google Scholar 

  189. Huyton T, Gottmann W, Bade-Doding C, Paine A, Blasczyk R. The T/NK cell co-stimulatory molecule SECTM1 is an IFN "early response gene" that is negatively regulated by LPS in human monocytic cells. Biochim Biophys Acta. 2011;1810(12):1294–301. https://doi.org/10.1016/j.bbagen.2011.06.020.

    Article  CAS  PubMed  Google Scholar 

  190. Wang T, Huang C, Lopez-Coral A, Slentz-Kesler KA, **ao M, Wherry EJ, Kaufman RE. K12/SECTM1, an interferon-gamma regulated molecule, synergizes with CD28 to costimulate human T cell proliferation. J Leukoc Biol. 2012;91(3):449–59. https://doi.org/10.1189/jlb.1011498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Katsoulidis E, Mavrommatis E, Woodard J, Shields MA, Sassano A, Carayol N, Sawicki KT, Munshi HG, Platanias LC. Role of interferon {alpha} (IFN{alpha})-inducible Schlafen-5 in regulation of anchorage-independent growth and invasion of malignant melanoma cells. J Biol Chem. 2010;285(51):40333–41. https://doi.org/10.1074/jbc.M110.151076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. El Hage F, Durgeau A, Mami-Chouaib F. TAP expression level in tumor cells defines the nature and processing of MHC class I peptides for recognition by tumor-specific cytotoxic T lymphocytes. Ann N Y Acad Sci. 2013;1283:75–80. https://doi.org/10.1111/j.1749-6632.2012.06777.x.

    Article  CAS  PubMed  Google Scholar 

  193. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H. Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J Exp Med. 1999;189(9):1451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Chen Q, Gong B, Mahmoud-Ahmed AS, Zhou A, Hsi ED, Hussein M, Almasan A. Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood. 2001;98(7):2183–92.

    Article  CAS  PubMed  Google Scholar 

  195. Leaman DW, Chawla-Sarkar M, Vyas K, Reheman M, Tamai K, Toji S, Borden EC. Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J Biol Chem. 2002;277(32):28504–11. https://doi.org/10.1074/jbc.M204851200.

    Article  CAS  PubMed  Google Scholar 

  196. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007;6(12):975–90. https://doi.org/10.1038/nrd2422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Talpaz M, McCredie KB, Mavligit GM, Gutterman JU. Leukocyte interferon-induced myeloid cytoreduction in chronic myelogenous leukemia. Blood. 1983;62(3):689–92.

    Article  CAS  PubMed  Google Scholar 

  198. Talpaz M, Kantarjian HM, McCredie KB, Keating MJ, Trujillo J, Gutterman J. Clinical investigation of human alpha interferon in chronic myelogenous leukemia. Blood. 1987;69(5):1280–8.

    Article  CAS  PubMed  Google Scholar 

  199. Alimena G, Morra E, Lazzarino M, Liberati AM, Montefusco E, Inverardi D, Bernasconi P, Mancini M, Donti E, Grignani F. Interferon alpha-2b as therapy for patients with Ph'-positive chronic myelogenous leukemia. Eur J Haematol Suppl. 1990;52:25–8.

    CAS  PubMed  Google Scholar 

  200. Talpaz M, Kantarjian H, Kurzrock R, Trujillo JM, Gutterman JU. Interferon-alpha produces sustained cytogenetic responses in chronic myelogenous leukemia. Philadelphia chromosome-positive patients. Ann Intern Med. 1991;114(7):532–8.

    Article  CAS  PubMed  Google Scholar 

  201. Niederle N, Kloke O, Wandl UB, Becher R, Moritz T, Opalka B. Long-term treatment of chronic myelogenous leukemia with different interferons: results from three studies. Leuk Lymphoma. 1993;9(1–2):111–9.

    Article  CAS  PubMed  Google Scholar 

  202. Ozer H, George SL, Schiffer CA, Rao K, Rao PN, Wurster-Hill DH, Arthur DD, Powell B, Gottlieb A, Peterson BA, Rai K, Testa JR, LeBeau M, Tantravahi R, Bloomfield CD. Prolonged subcutaneous administration of recombinant alpha 2b interferon in patients with previously untreated Philadelphia chromosome-positive chronic-phase chronic myelogenous leukemia: effect on remission duration and survival: cancer and Leukemia group B study 8583. Blood. 1993;82(10):2975–84.

    Article  CAS  PubMed  Google Scholar 

  203. Thaler J, Gastl G, Fluckinger T, Niederwieser D, Huber H, Seewann H, Silly H, Lang A, Abbrederis C, Gadner H. Treatment of chronic myelogenous leukemia with interferon alfa-2c: response rate and toxicity in a phase II multicenter study. Semin Hematol. 1993;30(3 Suppl 3):17–9.

    CAS  PubMed  Google Scholar 

  204. Hehlmann R, Heimpel H, Hasford J, Kolb HJ, Pralle H, Hossfeld DK, Queisser W, Loffler H, Hochhaus A, Heinze B. Randomized comparison of interferon-alpha with busulfan and hydroxyurea in chronic myelogenous leukemia. Blood. 1994;84(12):4064–77.

    Article  CAS  PubMed  Google Scholar 

  205. Italian Cooperative Study Group on Chronic Myeloid Leukemia. Interferon alfa-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med. 1994;330(12):820–5.

    Article  Google Scholar 

  206. Allan NC, Richards SM, Shepherd PC, on behalf of the UK Medical Research Council's Working Parties for Therapeutic Trials in Adult Leukaemia. UK Medical Research Council randomised, multicentre trial of interferon-alpha n1 for chronic myeloid leukaemia: improved survival irrespective of cytogenetic response. Lancet. 1995;345(8962):1392–7.

    Article  CAS  PubMed  Google Scholar 

  207. Ohnishi K, Ohno R, Tomonaga M, Kamada N, Onozawa K, Kuramoto A, Dohy H, Mizoguchi H, Miyawaki S, Tsubaki K. A randomized trial comparing interferon-alpha with busulfan for newly diagnosed chronic myelogenous leukemia in chronic phase. Blood. 1995;86(3):906–16.

    Article  CAS  PubMed  Google Scholar 

  208. Talpaz M, Hehlmann R, Quintas-Cardama A, Mercer J, Cortes J. Re-emergence of interferon-alpha in the treatment of chronic myeloid leukemia. Leukemia. 2013;27(4):803–12. https://doi.org/10.1038/leu.2012.313.

    Article  CAS  PubMed  Google Scholar 

  209. Kantarjian HM, Talpaz M, Keating MJ, Estey EH, O'Brien S, Beran M, McCredie KB, Gutterman J, Freireich EJ. Intensive chemotherapy induction followed by interferon-alpha maintenance in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. Cancer. 1991;68(6):1201–7.

    Article  CAS  PubMed  Google Scholar 

  210. Kantarjian HM, Keating MJ, Estey EH, O'Brien S, Pierce S, Beran M, Koller C, Feldman E, Talpaz M. Treatment of advanced stages of Philadelphia chromosome-positive chronic myelogenous leukemia with interferon-alpha and low-dose cytarabine. J Clin Oncol. 1992;10(5):772–8.

    Article  CAS  PubMed  Google Scholar 

  211. Hehlmann R, Berger U, Pfirrmann M, Hochhaus A, Metzgeroth G, Maywald O, Hasford J, Reiter A, Hossfeld DK, Kolb HJ, Loffler H, Pralle H, Queisser W, Griesshammer M, Nerl C, Kuse R, Tobler A, Eimermacher H, Tichelli A, Aul C, Wilhelm M, Fischer JT, Perker M, Scheid C, Schenk M, Weiss J, Meier CR, Kremers S, Labedzki L, Schmeiser T, Lohrmann HP, Heimpel H. Randomized comparison of interferon α and hydroxyurea with hydroxyurea monotherapy in chronic myeloid leukemia (CML-study II): prolongation of survival by the combination of interferon α and hydroxyurea. Leukemia. 2003;17(8):1529–37. https://doi.org/10.1038/sj.leu.2403006.

    Article  CAS  PubMed  Google Scholar 

  212. Kantarjian HM, O'Brien S, Smith TL, Rios MB, Cortes J, Beran M, Koller C, Giles FJ, Andreeff M, Kornblau S, Giralt S, Keating MJ, Talpaz M. Treatment of Philadelphia chromosome-positive early chronic phase chronic myelogenous leukemia with daily doses of interferon alpha and low-dose cytarabine. J Clin Oncol. 1999;17(1):284–92.

    Article  CAS  PubMed  Google Scholar 

  213. Arthur CK, Ma DD. Combined interferon alfa-2a and cytosine arabinoside as first-line treatment for chronic myeloid leukemia. Acta Haematol. 1993;89:15–21.

    Article  PubMed  Google Scholar 

  214. Lindauer M, Domkin D, Döhner H, Kolb HJ, Neubauer A, Huhn D, Kreiter H, Koch B, Huber C, Aulitzky W, Fischer T. Efficacy and toxicity of IFN-α2b combined with cytarabine in chronic myelogenous leukaemia. Br J Haematol. 1999;106(4):1013–9.

    Article  CAS  PubMed  Google Scholar 

  215. Guilhot F, Chastang C, Michallet M, Guerci A, Harousseau JL, Maloisel F, Bouabdallah R, Guyotat D, Cheron N, Nicolini F, Abgrall JF, Tanzer J. Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. N Engl J Med. 1997;337(4):223–9.

    Article  CAS  PubMed  Google Scholar 

  216. Baccarani M, Rosti G, de Vivo A, Bonifazi F, Russo D, Martinelli G, Testoni N, Amabile M, Fiacchini M, Montefusco E, Saglio G, Tura S, Italian Cooperative Study Group on Myeloid L. A randomized study of interferon-α versus interferon-α and low-dose arabinosyl cytosine in chronic myeloid leukemia. Blood. 2002;99(5):1527–35.

    Article  CAS  PubMed  Google Scholar 

  217. Hochhaus A, Saussele S, Baerlocher GM, Brümmendorf TH, Burchert A, La Rosée P, Hasford J, Hehlmann R, Heim D, Krause SW, le Coutre P, Niederwieser D, Mayer J, Lange T, Haenel M, Stegelmann F, Gil A, Ernst T, Fabisch C, Pfirrmann M. Nilotinib vs Nilotinib plus pegylated interferon-alpha2b induction and nilotinib or pegylated interferon-alpha2b maintenance therapy for newly diagnosed BCR-ABL+ chronic myeloid leukemia patients in chronic phase: interim analysis of the Tiger (CML V)-study. Blood. 2018;132(Supplement 1):460. https://doi.org/10.1182/blood-2018-99-112119.

    Article  Google Scholar 

  218. Yeung DT, Shanmuganathan N, Grigg A, Cunningham I, Shortt J, Rowling P, Reynolds J, Harrup RA, Ross DM, Kipp D, Mills AK, Arthur CK, Schwarer AP, Jackson K, Viiala N, Weinkove R, Yong ASM, White DL, Branford S, Hughes TP, ALLG OBot. Combination of nilotinib and pegylated interferon Alfa-2B results in high rates of MR4.5 at 24 months—primary analysis of the ALLG CML 11 Pinnacle study. Blood. 2019;134(Supplement_1):2926. https://doi.org/10.1182/blood-2019-125740.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Talpaz .

Editor information

Editors and Affiliations

Ethics declarations

MT has chaired a satellite symposium for Merck and has received drugs from Merck for clinical studies. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talpaz, M., Mercer, J., Hehlmann, R. (2021). The Interferon-Alpha Revival in CML. In: Hehlmann, R. (eds) Chronic Myeloid Leukemia. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-71913-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71913-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71912-8

  • Online ISBN: 978-3-030-71913-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation