Approach for Genetic Studies

  • Chapter
  • First Online:
Precision Medicine in Stroke
  • 450 Accesses

Abstract

The genetic basis of disease started with the recognition of variations of patterns in disease risk and changes in risk among migrants, race/ethnicity, socioeconomic class, time trends, age effects, and gender variation. The first epidemiological steps in dissecting this genetic variation are assessment of family history, twin, and adoption studies at the phenotype level demonstrating that the disease tends to run in families more than would be expected by chance and examination of how that familial tendency is modified by the degree or type of relationship, age, or environmental factors. The next step still on the phenotype level in pedigree data is studies of the families of a population-based series of cases to determine whether the pattern of disease among relatives is compatible with one or more major genes, polygenes, or shared environmental factors. Further assessment is at the genotype level, to collect blood samples from potentially informative members of multiple case families and types of genetic markers at known locations. A variety of strategies exist. Genetic association studies are used to detect association between one or more genetic markers with continuous or discrete phenotype. They allow us to compare different alleles with the phenotype in a similar manner across unrelated individuals or families. Mendelian randomisation uses genetic variants as instrumental variables to infer whether a risk factor causally affects the phenotype. Genome-wide association studies (GWAS) use chip technology to genotype hundreds of thousands of common single-nucleotide polymorphisms (SNPs), which are then analysed for association with a disease or trait. GWAS are hypothesis-free methods for identifying associations between genetic regions and traits. Next-generation sequencing (NGS) is the catch-all term used to describe a number of different modern sequencing technologies. These technologies allow for sequencing of DNA and RNA much more quickly and cheaply than the previously used sequencing, and as such revolutionised the study of genomics and molecular biology. The genetic studies estimate the frequency of the various mutations and the effect of each on disease risk, including any interactions with age, host, or environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas DC. ProQuest. In: Statistical methods in genetic epidemiology. Oxford: Oxford University Press; 2004.

    Google Scholar 

  2. Smith GD, Palmer LJ, Burton PR. An introduction to genetic epidemiology. Bristol: Policy Press; 2011.

    Google Scholar 

  3. Ziegler A, König IR. ProQuest. In: Pahlke F, editor. A statistical approach to genetic epidemiology: with access to e-learning platform. Weinheim an der Bergstrasse: Wiley-VCH Verlag GmbH & Co.; 2010.

    Chapter  Google Scholar 

  4. Rebbeck TR, Ambrosone CB, Shields PG. Molecular epidemiology: applications in cancer and other human diseases. New York: Informa Healthcare; 2008.

    Google Scholar 

  5. Witte JS, Gauderman WJ, Thomas DC. Asymptotic bias and efficiency in case-control studies of candidate genes and gene-environment interactions: basic family designs. Am J Epidemiol. 1999;149(8):693–705.

    Article  CAS  PubMed  Google Scholar 

  6. Thomas DC, Witte JS. Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiol Biomark Prev. 2002;11(6):505–12.

    Google Scholar 

  7. Lewis CM, Knight J. Introduction to genetic association studies. Cold Spring Harb Protoc. 2012;2012(3):297–306.

    Article  PubMed  Google Scholar 

  8. Foulkes AS. Applied statistical genetics with R: for population-based association studies. New York: Springer; 2009.

    Book  Google Scholar 

  9. Datta S, Datta S, Nettleton D, Datta S. Statistical analysis of next generation sequencing data. Cham: Springer International Publishing; 2014.

    Book  Google Scholar 

  10. Laird NM, Lange C. The fundamentals of modern statistical genetics. New York: Springer; 2011.

    Book  Google Scholar 

  11. Ken-Dror G, Cooper JA, Humphries SE, Drenos F, Ireland HA. Free protein S level as a risk factor for coronary heart disease and stroke in a prospective cohort study of healthy United Kingdom men. Am J Epidemiol. 2011;174(8):958–68.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ken-Dror G, Drenos F, Humphries SE, et al. Haplotype and genotype effects of the F7 gene on circulating factor VII, coagulation activation markers and incident coronary heart disease in UK men. J Thromb Haemost. 2010;8(11):2394–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22(15):1928–9.

    Article  CAS  PubMed  Google Scholar 

  14. Cordell HJ, Clayton DG. Genetic association studies. Lancet. 2005;366(9491):1121–31.

    Article  PubMed  Google Scholar 

  15. Neale BM. Statistical genetics : gene map** through linkage and association. London: Taylor & Francis; 2008.

    Google Scholar 

  16. Schaid DJ. Genetic epidemiology and haplotypes. Hoboken, NJ: Wiley-Liss; 2004.

    Book  Google Scholar 

  17. Ken-Dror G, Hastings IM. Markov chain Monte Carlo and expectation maximization approaches for estimation of haplotype frequencies for multiply infected human blood samples. Malar J. 2016;15(1):430.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sekula P, Del Greco MF, Pattaro C, Kottgen A. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol. 2016;27(11):3253–65.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.

    Article  PubMed  Google Scholar 

  20. Evans DM, Davey SG. Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu Rev Genomics Hum Genet. 2015;16:327–50.

    Article  CAS  PubMed  Google Scholar 

  21. Jansen H, Samani NJ, Schunkert H. Mendelian randomization studies in coronary artery disease. Eur Heart J. 2014;35(29):1917–24.

    Article  CAS  PubMed  Google Scholar 

  22. Burgess S, Thompson SG, Burgess S. Mendelian randomization: methods for using genetic variants in causal estimation. Boca Raton, FL: CRC Press; 2015.

    Book  Google Scholar 

  23. Bennett DA. An introduction to instrumental variables—part 2: Mendelian randomisation. Neuroepidemiology. 2010;35(4):307–10.

    Article  PubMed  Google Scholar 

  24. Verduijn M, Siegerink B, Jager KJ, Zoccali C, Dekker FW. Mendelian randomization: use of genetics to enable causal inference in observational studies. Nephrol Dial Transplant. 2010;25(5):1394–8.

    Article  PubMed  Google Scholar 

  25. Davies NM, Smith GD, Windmeijer F, Martin RM. Issues in the reporting and conduct of instrumental variable studies: a systematic review. Epidemiology. 2013;24(3):363–9.

    Article  PubMed  Google Scholar 

  26. Swanson SA, Hernan MA. Commentary: how to report instrumental variable analyses (suggestions welcome). Epidemiology. 2013;24(3):370–4.

    Article  PubMed  Google Scholar 

  27. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hernan MA, Robins JM. Instruments for causal inference: an epidemiologist’s dream? Epidemiology. 2006;17(4):360–72.

    Article  PubMed  Google Scholar 

  29. Greco MF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34(21):2926–40.

    Article  Google Scholar 

  30. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. 2017;26(5):2333–55.

    Article  PubMed  Google Scholar 

  31. Teare MD, Teare MD. Genetic epidemiology. Totowa, NJ: Humana Press; 2011.

    Book  Google Scholar 

  32. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178(7):1177–84.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Palmer TM, Nordestgaard BG, Benn M, et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: mendelian randomisation analysis of two large cohorts. BMJ. 2013;347:f4262.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Burgess S, Daniel RM, Butterworth AS, Thompson SG, Consortium EP-I. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol. 2015;44(2):484–95.

    Article  PubMed  Google Scholar 

  36. Relton CL, Davey SG. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol. 2012;41(1):161–76.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Evans DM, Brion MJ, Paternoster L, et al. Mining the human phenome using allelic scores that index biological intermediates. PLoS Genet. 2013;9(10):e1003919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Scherer A. GWAS. Bozeman, MT: Golden Helix, Inc.; 2016.

    Google Scholar 

  39. Cortes A, Brown MA. Promise and pitfalls of the immunochip. Arthritis Res Ther. 2011;13(1):101.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol. 2012;8(12):e1002822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marees AT, de Kluiver H, Stringer S, et al. A tutorial on conducting genome-wide association studies: quality control and statistical analysis. Int J Methods Psychiatr Res. 2018;27(2):e1608.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Teo YY. Common statistical issues in genome-wide association studies: a review on power, data quality control, genotype calling and population structure. Curr Opin Lipidol. 2008;19(2):133–43.

    Article  CAS  PubMed  Google Scholar 

  43. Motsinger-Reif AA, Jorgenson E, Relling MV, et al. Genome-wide association studies in pharmacogenomics: successes and lessons. Pharmacogenet Genomics. 2013;23(8):383–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genome-wide association scans. Bioinformatics. 2010;26(17):2190–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013;9(3):e1003348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gondro C. Primer to analysis of genomic data using R. Cham: Springer International Publishing; 2015.

    Book  Google Scholar 

  47. Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc. 2015;2015(11):951–69.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Anders S, McCarthy DJ, Chen Y, et al. Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nat Protoc. 2013;8(9):1765–86.

    Article  PubMed  CAS  Google Scholar 

  49. Liu JX, Gao YL, Xu Y, Zheng CH, You J. Differential expression analysis on RNA-Seq count data based on penalized matrix decomposition. IEEE Trans Nanobioscience. 2014;13(1):12–8.

    Article  PubMed  Google Scholar 

  50. Rapaport F, Khanin R, Liang Y, et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 2013;14(9):R95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Daly AK. Pharmacogenetics: a general review on progress to date. Br Med Bull. 2017;124(1):65–79.

    CAS  PubMed  Google Scholar 

  52. Cotlarciuc I, Marjot T, Khan MS, et al. Towards the genetic basis of cerebral venous thrombosis—the BEAST Consortium: a study protocol. BMJ Open. 2016;6(11):e012351.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ferro JM, Canhao P, Stam J, Bousser MG, Barinagarrementeria F, Investigators I. Prognosis of cerebral vein and dural sinus thrombosis: results of the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT). Stroke. 2004;35(3):664–70.

    Article  PubMed  Google Scholar 

  54. Martinelli I, Sacchi E, Landi G, Taioli E, Duca F, Mannucci PM. High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N Engl J Med. 1998;338(25):1793–7.

    Article  CAS  PubMed  Google Scholar 

  55. Martinelli I, Battaglioli T, Pedotti P, Cattaneo M, Mannucci PM. Hyperhomocysteinemia in cerebral vein thrombosis. Blood. 2003;102(4):1363–6.

    Article  CAS  PubMed  Google Scholar 

  56. Junker R, Nabavi DG, Wolff E, et al. Plasminogen activator inhibitor-1 4G/4G-genotype is associated with cerebral sinus thrombosis in factor V Leiden carriers. Thromb Haemost. 1998;80(4):706–7.

    CAS  PubMed  Google Scholar 

  57. Le Cam-Duchez V, Bagan-Triquenot A, Barbay V, Mihout B, Borg JY. The G79A polymorphism of protein Z gene is an independent risk factor for cerebral venous thrombosis. J Neurol. 2008;255(10):1521–5.

    Article  CAS  PubMed  Google Scholar 

  58. Passamonti SM, Biguzzi E, Cazzola M, et al. The JAK2 V617F mutation in patients with cerebral venous thrombosis. J Thromb Haemost. 2012;10(6):998–1003.

    Article  CAS  PubMed  Google Scholar 

  59. Marjot T, Yadav S, Hasan N, Bentley P, Sharma P. Genes associated with adult cerebral venous thrombosis. Stroke. 2011;42(4):913–8.

    Article  CAS  PubMed  Google Scholar 

  60. Cheng YC, Cole JW, Kittner SJ, Mitchell BD. Genetics of ischemic stroke in young adults. Circ Cardiovasc Genet. 2014;7(3):383–92.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ken-Dror, G., Sharma, P. (2021). Approach for Genetic Studies. In: Fonseca, A.C., Ferro, J.M. (eds) Precision Medicine in Stroke. Springer, Cham. https://doi.org/10.1007/978-3-030-70761-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70761-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70760-6

  • Online ISBN: 978-3-030-70761-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation