Applications of Artificial Intelligence and Molecular Immune Pathogenesis, Ongoing Diagnosis and Treatments for COVID-19

  • Chapter
  • First Online:
Artificial Intelligence for COVID-19

Abstract

The Coronavirus Disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. It is associated with infrequent epidemic derive by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) which started in Dec 2019 from Wuhan city, China and escalated throughout the world. The transmission of this SARS-CoV-2 has been reported as a third most pathogenic coronavirus for the human community after SARS-CoV (Severe Respiratory Syndrome Coronavirus) and MERS-CoV (Middle East Respiratory Syndrome Coronavirus) in 21st century. The aim of this chapter includes portraying the potential of artificial intelligence (AI) technology as a tool to analyse, evaluate, prevent and fight against the COVID-19. Additionally, there is an effort to summarize the molecular biology of this deadly virus, molecular immune pathogenesis, ongoing detection and therapeutic strategies of COVID-19 based on the present understanding of infection mechanism of MERS and SARS coronaviruses. On a broader aspect, this chapter also reports developments in vaccines and therapeutics to cure COVID-19 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AI:

Artificial Intelligence

CT:

Computerized Tomography

VGG:

Visual Geometry Group

SVM:

Support Vector Machine

KNN:

K-Nearest Neighbor

MLPNN:

Multilayer Perceptron Neural Network

PCA:

Principal Component Analysis

MRI:

Magnetic Resonance Imaging

DBSCAN:

Density Based Spatial Clustering of Applications with Noise

LSTM:

Long Short-Term Memory

SEIR:

Susceptible Exposed Infectious Recovered

BPNN:

Backward Propagation Neural Network

GAN:

Generative Adversarial Network

CNN:

Convolutional Neural Network

NLP:

Natural Language Processing (NLP)

NLG:

Natural Language Generation (NLG)

NLU:

Natural Language Understanding

ELMo:

Embeddings from Language Models,

NLTK:

Natural Language Toolkit (NLTK)

ULMFiT:

Universal Language Model Fine Tuning

BERT:

Bidirectional Encoder Representations from Transformers

ERNIE:

Enhanced Representation through kNowledge IntEgration

GPT:

Generative Pre-Training

BPT:

Biopharma Trend Analytics

ANN:

Artificial Neural Networks

SARS:

Severe Acute Respiratory Syndrome

MERS:

Middle East Respiratory Syndrome

COVID:

Coronavirus Disease

RNA:

Ribonucleic Acid

HCoV-HKU1:

Human Coronavirus HKU1

ARDS:

Acute Respiratory Distress Syndrome

ACE2:

Angiotensin-Converting Enzyme 2

TMPRSS2:

Transmembrane Serine Protease II

ERGIC:

Endoplasmic Reticulum-Golgi Intermediate Compartment

ELISA:

Enzyme-Linked Immunosorbent Assay

POCT:

Point-of-care Testing

RdRp:

RNA-Dependent RNA Polymerase Gene

References

  1. https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

  2. Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., Agha, R.: The socio-economic implications of the coronavirus and COVID-19 pandemic: a review. Int. J. Surg. (2020)

    Google Scholar 

  3. Maliszewska, M., Mattoo, A., Van Der Mensbrugghe, D.: The potential impact of COVID-19 on GDP and trade: a preliminary assessment (2020)

    Google Scholar 

  4. Fernandes, N.: Economic effects of coronavirus outbreak (COVID-19) on the world economy. Available at SSRN 3557504 (2020)

    Google Scholar 

  5. Makridis, C., Hartley, J.: The Cost of Covid-19: a Rough Estimate of the 2020 US GDP Impact. Special Edition Policy Brief (2020)

    Google Scholar 

  6. Wang, J., Tang, K., Feng, K., Lv, W.: High temperature and high humidity reduce the transmission of COVID-19. Available at SSRN 3551767 (2020)

    Google Scholar 

  7. McKibbin, W., Fernando, R.: The economic impact of COVID-19. Econ. Time of COVID-19 19, 45 (2020)

    Google Scholar 

  8. Iacus, S.M., Natale, F., Santamaria, C., Spyratos, S., Vespe, M.: Estimating and projecting air passenger traffic during the COVID-19 coronavirus outbreak and its socio-economic impact. Safety Science, p. 104791 (2020)

    Google Scholar 

  9. Boone, L., Haugh, D., Pain, N., Salins, V.: 2 Tackling the fallout from COVID-19. Economics in the Time of COVID-19, p. 37 (2020)

    Google Scholar 

  10. Baker, S.R., Bloom, N., Davis, S.J., Terry, S.J.: Covid-induced economic uncertainty (No. w26983). National Bureau of Economic Research (2020)

    Google Scholar 

  11. Sumner, A., Hoy, C., Ortiz-Juarez, E.: Estimates of the Impact of COVID-19 on Global Poverty. UNU-WIDER, April, pp. 800–809 (2020)

    Google Scholar 

  12. Dietrich, A., Keuster, K., Müller, G.J., Schoenle, R.: News and uncertainty about covid-19: Survey evidence and short-run economic impact (2020)

    Google Scholar 

  13. Maital, S., Barzani, E.: The Global Economic Impact of COVID-19: A Summary of Research. Samuel Neaman Institute for National Policy Research (2020)

    Google Scholar 

  14. Alvarez, F.E., Argente, D., Lippi, F.: A simple planning problem for covid-19 lockdown (No. w26981). National Bureau of Economic Research (2020)

    Google Scholar 

  15. Inoue, H., Todo, Y.: The propagation of the economic impact through supply chains: The case of a mega-city lockdown against the spread of COVID-19. Available at SSRN 3564898 (2020)

    Google Scholar 

  16. Gössling, S., Scott, D., Hall, C.M.: Pandemics, tourism and global change: a rapid assessment of COVID-19. J. Sustain. Tourism, 1–20 (2020)

    Google Scholar 

  17. Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., Agha, R.: The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. (London, England) 78, 185 (2020)

    Article  Google Scholar 

  18. Vaishya, R., Javaid, M., Khan, I.H., Haleem, A.: Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabet. Metabolic Syndrome: Clin. Res. Rev. (2020)

    Google Scholar 

  19. Shi, F., Wang, J., Shi, J., Wu, Z., Wang, Q., Tang, Z., He, K., Shi, Y., Shen, D.: Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19. IEEE Rev. Biomed. Eng. (2020)

    Google Scholar 

  20. Rao, A.S.S., Vazquez, J.A.: Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine. Infect. Control Hosp. Epidemiol. 41(7), 826–830 (2020)

    Article  Google Scholar 

  21. Hu, Z., Ge, Q., **, L., **ong, M.: Artificial intelligence forecasting of covid-19 in china. ar**v preprint ar**v:2002.07112

  22. Alimadadi, A., Aryal, S., Manandhar, I., Munroe, P.B., Joe, B., Cheng, X.: Artificial intelligence and machine learning to fight COVID-19 (2020)

    Google Scholar 

  23. Mei, X., Lee, H.C., Diao, K.Y., Huang, M., Lin, B., Liu, C., **e, Z., Ma, Y., Robson, P.M., Chung, M., Bernheim, A.: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nat. Med., 1–5 (2020)

    Google Scholar 

  24. McCall, B.: COVID-19 and artificial intelligence: protecting health-care workers and curbing the spread. The Lancet Digital Health 2(4), e166–e167 (2020)

    Article  Google Scholar 

  25. Naudé, W.: Artificial intelligence vs COVID-19: limitations, constraints and pitfalls. Ai & Society, p. 1

    Google Scholar 

  26. BBC News (2020). Coronavirus France: cameras to monitor masks and social distancing (2020). https://www.bbc.com/news/worldeurope-52529981

  27. Singer, N., Sang-Hun, C.: As coronavirus surveillance escalates, personal privacy plummets. The New York Times (2020). https://www.nytimes.com/2020/03/23/technology/coronavirussurveillance-tracking-privacy.html

  28. Reevell, P.: How Russia is using facial recognition to police its coronavirus lockdown. ABC News (2020). https://abcnews.go.com/International/russia-facial-recognition-policecoronavirus-lockdown/story?id=70299736

  29. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  30. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ar**v preprint (2014) ar**v:1409.1556

  32. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  33. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer, Cham (2014)

    Google Scholar 

  34. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  35. **e, X., Zhong, Z., Zhao, W., Zheng, C., Wang, F., Liu, J.: Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. Radiology, p. 200343 (2020)

    Google Scholar 

  36. Luo, H., Tang, Q.L., Shang, Y.X., Liang, S.B., Yang, M., Robinson, N., Liu, J.P.: Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin. J. Integr. Med., 1–8 (2020)

    Google Scholar 

  37. Bala, P.C., Eisenreich, B.R., Yoo, S.B.M., Hayden, B.Y., Park, H.S., Zimmermann, J.: OpenMonkeyStudio: automated markerless pose estimation in freely moving macaques. bioRxiv (2020)

    Google Scholar 

  38. Pourhomayoun, M., Shakibi, M.: Predicting mortality risk in patients with COVID-19 using artificial intelligence to help medical decision-making. medRxiv (2020)

    Google Scholar 

  39. Feng, C., Huang, Z., Wang, L., Chen, X., Zhai, Y., Zhu, F., Chen, H., Wang, Y., Su, X., Huang, S., Tian, L.: A novel triage tool of artificial intelligence assisted diagnosis aid system for suspected COVID-19 pneumonia. In: Fever Clinics (2020)

    Google Scholar 

  40. Rahmatizadeh, S., Valizadeh-Haghi, S., Dabbagh, A.: The role of artificial intelligence in management of critical COVID-19 patients. J. Cell. Mol. Anesthesia 5(1), 16–22 (2020)

    Google Scholar 

  41. Jiang, X., Coffee, M., Bari, A., Wang, J., Jiang, X., Huang, J., Shi, J., Dai, J., Cai, J., Zhang, T., Wu, Z.: Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. CMC: Comput. Mater. Continua 63, 537–51 (2020)

    Google Scholar 

  42. Gutierrez, G.: Artificial intelligence in the intensive care unit. Crit. Care 24, 1–9 (2020)

    Article  Google Scholar 

  43. Yan, L., Zhang, H.T., **ao, Y., Wang, M., Sun, C., Liang, J., Li, S., Zhang, M., Guo, Y., **ao, Y., Tang, X.: Prediction of criticality in patients with severe Covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan. MedRxiv

    Google Scholar 

  44. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc.: Series B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

  45. Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning, vol. 2. MIT Press Cambridge, MA, 493, p. 494 (2006)

    Google Scholar 

  46. Mei, X., Lee, H.C., Diao, K.Y., Huang, M., Lin, B., Liu, C., **e, Z., Ma, Y., Robson, P.M., Chung, M., Bernheim, A.: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nature Medicine, pp. 1–5 (2020)

    Google Scholar 

  47. Zhang, K., Liu, X., Shen, J., Li, Z., Sang, Y., Wu, X., Zha, Y., Liang, W., Wang, C., Wang, K., Ye, L.: Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of covid-19 pneumonia using computed tomography. Cell (2020)

    Google Scholar 

  48. Shi, H., Han, X., Jiang, N., Cao, Y., Alwalid, O., Gu, J., Fan, Y., Zheng, C.: Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis. (2020)

    Google Scholar 

  49. Lee, E.Y., Ng, M.Y., Khong, P.L.: COVID-19 pneumonia: what has CT taught us? Lancet. Infect. Dis 20(4), 384–385 (2020)

    Article  Google Scholar 

  50. Kang, H., **a, L., Yan, F., Wan, Z., Shi, F., Yuan, H., Jiang, H., Wu, D., Sui, H., Zhang, C., Shen, D.: Diagnosis of coronavirus disease 2019 (covid-19) with structured latent multi-view representation learning. IEEE transactions on medical imaging (2020)

    Google Scholar 

  51. Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Acharya, U.R.: Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med., 103792 (2020)

    Google Scholar 

  52. Khatami, A., Khosravi, A., Nguyen, T., Lim, C.P., Nahavandi, S.: Medical image analysis using wavelet transform and deep belief networks. Expert Syst. Appl. 86, 190–198 (2017)

    Article  Google Scholar 

  53. Khan, A.I., Shah, J.L., Bhat, M.M.: Coronet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Progr. Biomed., 105581 (2020)

    Google Scholar 

  54. Kooraki, S., Hosseiny, M., Myers, L., Gholamrezanezhad, A.: Coronavirus (COVID-19) outbreak: what the department of radiology should know. J. Am. Coll. Radiol. (2020)

    Google Scholar 

  55. Ardakani, A.A., Kanafi, A.R., Acharya, U.R., Khadem, N., Mohammadi, A.: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Comput. Biol. Med., 103795 (2020)

    Google Scholar 

  56. Oh, Y., Park, S., Ye, J.C.: Deep learning covid-19 features on cxr using limited training data sets. IEEE Trans. Med. Imaging (2020)

    Google Scholar 

  57. Pereira, R.M., Bertolini, D., Teixeira, L.O., Silla Jr, C.N., Costa, Y.M.: COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Comput. Methods Progr. Biomed., 105532 (2020)

    Google Scholar 

  58. Fan, D.P., Zhou, T., Ji, G.P., Zhou, Y., Chen, G., Fu, H., Shen, J., Shao, L.: Inf-Net: Automatic COVID-19 Lung infection segmentation from CT Images. IEEE Trans. Med. Imaging (2020)

    Google Scholar 

  59. Brunese, L., Mercaldo, F., Reginelli, A., Santone, A.: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput. Methods Programs Biomed. 196, (2020)

    Article  Google Scholar 

  60. Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., Pinheiro, P.R.: Covidgan: Data augmentation using auxiliary classifier gan for improved covid-19 detection. IEEE Access 8, 91916–91923 (2020)

    Article  Google Scholar 

  61. Abdel-Basset, M., Mohamed, R., Elhoseny, M., Chakrabortty, R.K., Ryan, M.: A hybrid COVID-19 detection model using an improved marine predators algorithm and a ranking-based diversity reduction strategy. IEEE Access 8, 79521–79540 (2020)

    Article  Google Scholar 

  62. He, X., Yang, X., Zhang, S., Zhao, J., Zhang, Y., **ng, E., **e, P.: Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. medRxiv (2020)

    Google Scholar 

  63. Chen, J., Wu, L., Zhang, J., Zhang, L., Gong, D., Zhao, Y., Hu, S., Wang, Y., Hu, X., Zheng, B., Zhang, K.: Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. MedRxiv (2020)

    Google Scholar 

  64. Haleem, A., Vaishya, R., Javaid, M., Khan, I.H.: Artificial Intelligence (AI) applications in orthopaedics: an innovative technology to embrace. J. Clin. Orthopaed. Trauma 11, S80–S81 (2020)

    Article  Google Scholar 

  65. Stebbing, J., Phelan, A., Griffin, I., Tucker, C., Oechsle, O., Smith, D., Richardson, P.: COVID-19: combining antiviral and anti-inflammatory treatments. Lancet. Infect. Dis. 20(4), 400–402 (2020)

    Article  Google Scholar 

  66. Biswas, K., Sen, P.: Space-time dependence of corona virus (COVID-19) outbreak. ar**v preprint ar**v:2003.03149

  67. Ester, M., Kriegel, H. P., Sander, J., and Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96(34), 226–231 (1996)

    Google Scholar 

  68. Senior, A.W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Žídek, A., Nelson, A.W., Bridgland, A., Penedones, H.: Improved protein structure prediction using potentials from deep learning. Nature 577(7792), 706–710 (2020)

    Article  Google Scholar 

  69. Jumper, J., Tunyasuvunakool, K., Kohli, P., Hassabis, D., the AlphaFold Team: Computational predictions of protein structures associated with COVID-19, DeepMind website, 5 March 2020, https://deepmind.com/research/open-source/computationalpredictions-of-protein-structures-associated-with-COVID-19 (2020)

  70. Nguyen, T.T., Abdelrazek, M., Nguyen, D.T., Aryal, S., Nguyen, D.T., Khatami, A.: Origin of Novel Coronavirus (COVID-19): a computational biology study using artificial intelligence. BioRxiv (2020)

    Google Scholar 

  71. Nguyen, T.T., Pathirana, P.N., Nguyen, T., Nguyen, H., Bhatti, A., Nguyen, D.C., Nguyen, D.T., Nguyen, N.D., Creighton, D., Abdelrazek, M.: Genomic mutations and changes in protein secondary structure and solvent accessibility of SARS-CoV-2 (COVID-19 virus). bioRxiv (2020)

    Google Scholar 

  72. Oak Ridge National Laboratory: LandScan Global Population Database. https://landscan.ornl.gov/ (2020)

  73. Bogoch, I.I., Brady, O.J., Kraemer, M.U., German, M., Creatore, M.I., Kulkarni, M.A., Brownstein, J.S., Mekaru, S.R., Hay, S.I., Groot, E., Watts, A.: Anticipating the international spread of Zika virus from Brazil. The Lancet 387(10016), 335–336 (2016)

    Article  Google Scholar 

  74. Hou, X., Wang, B., Hu, W., Yin, L., Wu, H.: SolarNet: a deep learning framework to map solar power plants In China from satellite imagery. ar**v preprint ar**v:1912.03685

  75. Perry, T.S.: Satellites and AI monitor Chinese economy’s reaction to coronavirus. IEEE Spectrum 10

    Google Scholar 

  76. Abd-Alrazaq, A., Alhuwail, D., Househ, M., Hamdi, M., Shah, Z.: Top concerns of tweeters during the COVID-19 pandemic: infoveillance study. J. Med. Internet Res. 22(4), (2020)

    Article  Google Scholar 

  77. Li, S., Wang, Y., Xue, J., Zhao, N., Zhu, T.: The impact of COVID-19 epidemic declaration on psychological consequences: a study on active Weibo users. Int. J. Environ. Res. Public Health 17(6), 2032 (2020)

    Article  Google Scholar 

  78. Torales, J., O’Higgins, M., Castaldelli-Maia, J.M., Ventriglio, A.: The outbreak of COVID-19 coronavirus and its impact on global mental health. Int. J. Soc Psychiatry, 0020764020915212 (2020)

    Google Scholar 

  79. Yang, Z., Zeng, Z., Wang, K., Wong, S.S., Liang, W., Zanin, M., Liu, P., Cao, X., Gao, Z., Mai, Z., Liang, J.: Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J. Thoracic Dis. 12(3), 165 (2020)

    Article  Google Scholar 

  80. Zheng, N., Du, S., Wang, J., Zhang, H., Cui, W., Kang, Z., Yang, T., Lou, B., Chi, Y., Long, H., Ma, M.: Predicting covid-19 in china using hybrid AI model. IEEE Trans. Cybern. (2020)

    Google Scholar 

  81. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  82. Chae, S., Kwon, S., Lee, D.: Predicting infectious disease using deep learning and big data. Int. J. Environ. Res Public Health 15(8), 1596 (2018)

    Article  Google Scholar 

  83. Riad, M.H., Sekamatte, M., Ocom, F., Makumbi, I., Scoglio, C.M.: Risk assessment of Ebola virus disease spreading in Uganda using a two-layer temporal network. Sci. Rep. 9(1), 1–17 (2019)

    Article  Google Scholar 

  84. Venna, S.R., Tavanaei, A., Gottumukkala, R.N., Raghavan, V.V., Maida, A.S., Nichols, S.: A novel data-driven model for real-time influenza forecasting. IEEE Access 7, 7691–7701 (2018)

    Article  Google Scholar 

  85. Kucharski, A.J., Russell, T.W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R.M., Sun, F., Jit, M., Munday, J.D., Davies, N.: Early dynamics of transmission and control of COVID-19: a mathematical modelling study. The Lancet Infect. Dis. (2020)

    Google Scholar 

  86. Gambhir, M., Bozio, C., O’Hagan, J.J., Uzicanin, A., Johnson, L.E., Biggerstaff, M., Swerdlow, D.L.: Infectious disease modeling methods as tools for informing response to novel influenza viruses of unknown pandemic potential. Clin. Infect. Dis. 60(suppl_1), S11–S19 (2015)

    Google Scholar 

  87. Rasmussen, S.A., Redd, S.C., 2015. Using results from infectious disease modeling to improve the response to a potential H7N9 influenza pandemic. Clinical Infectious Diseases, 60(suppl_1), pp.S9-S10

    Google Scholar 

  88. Koo, J.R., Cook, A.R., Park, M., Sun, Y., Sun, H., Lim, J.T., Tam, C., Dickens, B.L.: Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. Lancet Infect. Dis. (2020)

    Google Scholar 

  89. Hamzah, F.B., Lau, C., Nazri, H., Ligot, D.V., Lee, G., Tan, C.L.: CoronaTracker: worldwide COVID-19 outbreak data analysis and prediction. Bull. World Health Organ. 1, 32 (2020)

    Google Scholar 

  90. Wu, J.T., Leung, K., Leung, G.M.: Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet 395(10225), 689–697 (2020)

    Article  Google Scholar 

  91. Zhao, S., Musa, S.S., Lin, Q., Ran, J., Yang, G., Wang, W., Lou, Y., Yang, L., Gao, D., He, D., Wang, M.H.: Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: a data-driven modelling analysis of the early outbreak. J. Clin. Med. 9(2), 388 (2020)

    Article  Google Scholar 

  92. Karako, K., Song, P., Chen, Y., Tang, W.: Analysis of COVID-19 infection spread in Japan based on stochastic transition model. Biosci. Trends (2020)

    Google Scholar 

  93. Zhang, P., Chen, B., Ma, L., Li, Z., Song, Z., Duan, W., Qiu, X.: The large scale machine learning in an artificial society: prediction of the Ebola outbreak in Bei**g. Computational Intelligence and Neuroscience (2015)

    Google Scholar 

  94. Akhtar, M., Kraemer, M.U., Gardner, L.M.: A dynamic neural network model for predicting risk of Zika in real time. BMC Med. 17(1), 171 (2019)

    Article  Google Scholar 

  95. Jiang, D., Hao, M., Ding, F., Fu, J., Li, M.: Map** the transmission risk of Zika virus using machine learning models. Acta Trop. 185, 391–399 (2018)

    Article  Google Scholar 

  96. Modjarrad, K., Moorthy, V.S., Millett, P., Gsell, P.S., Roth, C., Kieny, M.P.: Develo** global norms for sharing data and results during public health emergencies. PLoS Med. 13(1), (2016)

    Article  Google Scholar 

  97. Zhavoronkov, A., Zagribelnyy, B., Zhebrak, A., Aladinskiy, V., Terentiev, V., Vanhaelen, Q., Bezrukov, D.S., Polykovskiy, D., Shayakhmetov, R., Filimonov, A., Bishop, M.: Potential non-covalent SARS-CoV-2 3C-like protease inhibitors designed using generative deep learning approaches and reviewed by human medicinal chemist in virtual reality (2020)

    Google Scholar 

  98. Nguyen, D., Gao, K., Chen, J., Wang, R., Wei, G.: Potentially highly potent drugs for 2019-nCoV. bioRxiv (2020)

    Google Scholar 

  99. Ge, Y., Tian, T., Huang, S., Wan, F., Li, J., Li, S., Yang, H., Hong, L., Wu, N., Yuan, E., Cheng, L.: A data-driven drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. bioRxiv (2020)

    Google Scholar 

  100. Bobdey, S., Ray, S.: Going viral–Covid-19 impact assessment: a perspective beyond clinical practice. J. Marine Med. Soc. 22(1), 9 (2020)

    Article  Google Scholar 

  101. Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C. and Agha, R.: World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. (2020)

    Google Scholar 

  102. Chen, S., Yang, J., Yang, W., Wang, C., Bärnighausen, T.: COVID-19 control in China during mass population movements at New Year. The Lancet 395(10226), 764–766 (2020)

    Article  Google Scholar 

  103. Nguyen, D.D., Gao, K., Wang, M., Wei, G.W.: MathDL: mathematical deep learning for D3R Grand Challenge 4. J. Comput. Aided Mol. Des. 34(2), 131–147 (2020)

    Article  Google Scholar 

  104. Tang, B., He, F., Liu, D., Fang, M., Wu, Z., Xu, D.: AI-aided design of novel targeted covalent inhibitors against SARS-CoV-2. bioRxiv (2020)

    Google Scholar 

  105. Bung, N., Krishnan, S.R., Bulusu, G., Roy, A.: De novo design of new chemical entities (NCEs) for SARS-CoV-2 using artificial intelligence. ChemRxiv (2020)

    Google Scholar 

  106. Joshi, B.P., Bakrola, V.D., Shah, P., Krishnamurthy, R.: deepMINE-Natural language processing based automatic literature mining and research summarization for early stage comprehension in pandemic situations specifically for COVID-19. bioRxiv

    Google Scholar 

  107. Dong, M., Cao, X., Liang, M., Li, L., Liang, H., Liu, G.: Understand research hotspots surrounding COVID-19 and other coronavirus infections using topic modeling. medRxiv (2020)

    Google Scholar 

  108. Kuusisto, F., Page, D., Stewart, R.: Word embedding mining for SARS-CoV-2 and COVID-19 drug repurposing. F1000Research, 9(585), p. 585

    Google Scholar 

  109. Rao, A., Saipradeep, V.G., Joseph, T., Kotte, S., Sivadasan, N., Srinivasan, R.: Text and Network-Mining for COVID-19 Intervention Studies (2020)

    Google Scholar 

  110. Ahamed, S., Samad, M.: Information mining for covid-19 research from a large volume of scientific literature. ar**v preprint (2020). ar**v:2004.02085

  111. Patel, J.C., Tulswani, R., Khurana, P., Sharma, Y.K., Ganju, L., Kumar, B., Sugadev, R.: Identification of pulmonary comorbid diseases network based repurposing effective drugs for COVID-19 (2020)

    Google Scholar 

  112. Duran-Frigola, M., Bertoni, M., Blanco, R., Martínez, V., Pauls, E., Alcalde, V., Turon, G., Villegas, N., Fernández-Torras, A., Pons, C., Mateo, L.: Bioactivity profile similarities to expand the repertoire of COVID-19 drugs. J. Chem. Inf. Model. (2020)

    Google Scholar 

  113. Smeulders, A.W., Van Ginneken, A.M.: An analysis of pathology knowledge and decision making for the development of artificial intelligence-based consulting systems. Anal. Quant. Cytol. Histol. 11(3), 154–165 (1989)

    Google Scholar 

  114. Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P.D., Zhang, H., Ji, W., Bernheim, A., Siegel, E.: Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis. ar**v preprint (2020). ar**v:2003.05037

  115. Gugnani, P.: Coronavirus: It’s Reactivation in Cured Patients and Role of Artificial Intelligence for Infected Patients. Available at SSRN 3589222 (2020)

    Google Scholar 

  116. Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K.: Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology (2020)

    Google Scholar 

  117. Wan, K.H., Huang, S.S., Young, A.L., Lam, D.S.C.: Precautionary measures needed for ophthalmologists during pandemic of the coronavirus disease 2019 (COVID-19). Acta Ophthalmol. 98(3), 221–222 (2020)

    Article  Google Scholar 

  118. Pirouz, B., Shaffiee Haghshenas, S., Shaffiee Haghshenas, S., Piro, P.: Investigating a serious challenge in the sustainable development process: analysis of confirmed cases of COVID-19 (new type of coronavirus) through a binary classification using artificial intelligence and regression analysis. Sustainability 12(6), 2427 (2020)

    Article  Google Scholar 

  119. Gupta, R., Ghosh, A., Singh, A.K., Misra, A.: Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabet Metabol Syndrome 14(3), 211 (2020)

    Article  Google Scholar 

  120. Gupta, R., Misra, A.: Contentious issues and evolving concepts in the clinical presentation and management of patients with COVID-19 infectionwith reference to use of therapeutic and other drugs used in Co-morbid diseases (Hypertension, diabetes etc). Diabetes Metabol. Syndrome: Clin. Res. Rev.

    Google Scholar 

  121. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L., 2018. Deep contextualized word representations. ar**v preprint (2020). ar**v:1802.05365

  122. Bird, S., Klein, E., Loper, E., 2009. Natural Language Processing With Python: Analyzing Text With the Natural Language Toolkit. O’Reilly Media, Inc. (2020)

    Google Scholar 

  123. Howard, J., Ruder, S., 2018. Universal language model fine-tuning for text classification (2020). ar**v preprint ar**v:1801.06146

  124. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding (2018). ar**v preprint ar**v:1810.04805

  125. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  126. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.: Transformer-xl: Attentive language models beyond a fixed-length context (2019). ar**v preprint ar**v:1901.02860

  127. Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., Liu, Q.: ERNIE: Enhanced language representation with informative entities (2019). ar**v preprint ar**v:1905.07129

  128. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in Neural Information Processing Systems, pp. 5753–5763 (2019)

    Google Scholar 

  129. Ye, Z., Guo, Q., Gan, Q., Qiu, X., Zhang, Z.: Bp-transformer: Modelling long-range context via binary partitioning (2019). ar**v preprint ar**v:1911.04070

  130. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text transformer (2019). ar**v preprint ar**v:1910.10683

  131. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  132. Martin, A., Nateqi, J., Gruarin, S., Munsch, N., Abdarahmane, I., Knapp, B.: An artificial intelligence-based first-line defence against COVID-19: digitally screening citizens for risks via a chatbot. bioRxiv (2020)

    Google Scholar 

  133. WHO and Facebook:. WHO Health Alert’s Facebook Messenger Chatbot (2020). https://m.me/who

  134. WHO and Rakuten Viber: WHO Viber Interactive Chatbot (2020). https://vb.me/82e535

  135. WHO and WhatsApp: WHO’s Health Alert on WhatsApp (2020). http://bit.ly/who-covid19-whatsapp

  136. UNICEF’s Europe and Central Asia Regional Office and the WHO Regional Office for Europe: HealthBuddy (2020). https://healthbuddy.info/

  137. IBM: IBM Watson Assistant for Citizens (2020). https://www.ibm.com/au-en/watson/covid-response

  138. Chatbot and Infermedica: COVID-19 Risk Assessment Chatbot (2020). https://www.chatbot.com/covid19-chatbot/

  139. Barhead: Rona (COVID-19 Bot) (2020). https://barhead.com/technology/rona/

  140. Health Service Executive Ireland: COVID 19 Chat Bot (2020). https://www.hse.ie/chatbot/covid/chatiframe.aspx

  141. Yang, G.Z., Nelson, B.J., Murphy, R.R., Choset, H., Christensen, H., Collins, S.H., Dario, P., Goldberg, K., Ikuta, K., Jacobstein, N., Kragic, D.: Combating COVID-19—The role of robotics in managing public health and infectious diseases (2020)

    Google Scholar 

  142. Estrada, R., MA: The Uses of Drones in Case of Massive Epidemics Contagious Diseases Relief Humanitarian Aid: Wuhan-COVID-19 Crisis (2020)

    Google Scholar 

  143. Zeng, Z., Chen, P.J., Lew, A.A.: From high-touch to high-tech: COVID-19 drives robotics adoption. Tourism Geographies, pp. 1–11 (2020)

    Google Scholar 

  144. Tavakoli, M., Carriere, J., Torabi, A.: Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID-19 pandemic: An analysis of the state of the art and future vision. Adv. Intell. Syst., 2000071 (2020)

    Google Scholar 

  145. Nguyen, T.T., Nguyen, N.D., Nahavandi, S.: Deep reinforcement learning for multiagent systems: a review of challenges, solutions, and applications. IEEE Trans. Cybern. (2020)

    Google Scholar 

  146. Zhang, G.L., Khan, A.M., Srinivasan, K.N., August, J.T., Brusic, V.: Neural models for predicting viral vaccine targets. J. Bioinform. Comput. Biol. 3(05), 1207–1225 (2005)

    Article  Google Scholar 

  147. Soam, S.S., Bhasker, B., Mishra, B.N.: Improved prediction of MHC class I binders/non-binders peptides through artificial neural network using variable learning rate: SARS corona virus, a case study. In: Software Tools and Algorithms for Biological Systems, pp. 223–229. Springer, New York, NY (2011)

    Google Scholar 

  148. Ong, E., Wong, M.U., Huffman, A., He, Y.: COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. BioRxiv (2020)

    Google Scholar 

  149. Li, H., Sun, F.: Comparative studies of alignment, alignment-free and SVM based approaches for predicting the hosts of viruses based on viral sequences. Sci. Rep. 8(1), 1–9 (2018)

    MathSciNet  Google Scholar 

  150. Wrapp, D., et al.: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (2020). https://doi.org/10.1126/science.aax0902

    Article  Google Scholar 

  151. Huang, C., et al.: ‘Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China’, The Lancet. (2020). https://doi.org/10.1016/S0140-6736(20)30183-5

    Article  Google Scholar 

  152. Tahir ul Qamar, M., et al.: Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharmaceut Anal. (2020). https://doi.org/10.1016/j.jpha.2020.03.009

    Article  Google Scholar 

  153. Wu, F., et al.: A new coronavirus associated with human respiratory disease in China. Nature (2020). https://doi.org/10.1038/s41586-020-2008-3

    Article  Google Scholar 

  154. Perlman, S., Netland, J.: Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol. (2009). https://doi.org/10.1038/nrmicro2147

    Article  Google Scholar 

  155. Liu, D. X., Liang, J. Q., Fung, T.S.: Human Coronavirus-229E, -OC43, -NL63, and -HKU1. Reference Module in Life Sciences, B978–0-12-809633-8.21501-X (2020). https://doi.org/10.1016/B978-0-12-809633-8.21501-X

  156. Ye, Z.W., Yuan, S., Yuen, K.S., Fung, S.Y., Chan, C.P., **, D.Y.: Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 16(10), 1686–1697 (2020). https://doi.org/10.7150/ijbs.45472

    Article  Google Scholar 

  157. T, W., et al.: Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. (2020). https://doi.org/10.1038/s41423-020-0400-4

    Article  Google Scholar 

  158. Shereen, M.A., et al.: COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. (2020). https://doi.org/10.1016/j.jare.2020.03.005

    Article  Google Scholar 

  159. Guo, Y.R., et al.: The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- A n update on the status. Military Med. Res. (2020). https://doi.org/10.1186/s40779-020-00240-0

    Article  Google Scholar 

  160. Zheng, J.: SARS-coV-2: An emerging coronavirus that causes a global threat. Int. J. Biol. Sci. (2020). https://doi.org/10.7150/ijbs.45053

    Article  Google Scholar 

  161. Fehr, A.R., Perlman, S.: Coronaviruses: An overview of their replication and pathogenesis. In: Coronaviruses: Methods and Protocols (2015). https://doi.org/10.1007/978-1-4939-2438-7_1

  162. Masters, P.S.: The molecular biology of coronaviruses. Adv. Virus Res. (2006). https://doi.org/10.1016/S0065-3527(06)66005-3

    Article  Google Scholar 

  163. Knoops, K., et al.: SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. (2008). https://doi.org/10.1371/journal.pbio.0060226

    Article  Google Scholar 

  164. Chen, Y., Liu, Q., Guo, D.: Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. (2020). https://doi.org/10.1002/jmv.25681

    Article  Google Scholar 

  165. Sun, L., et al.: Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS ONE (2012). https://doi.org/10.1371/journal.pone.0030802

    Article  Google Scholar 

  166. Walls, A.C., et al.: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell (2020). https://doi.org/10.1016/j.cell.2020.02.058

    Article  Google Scholar 

  167. Schoeman, D., Fielding, B.C.: Coronavirus envelope protein: Current knowledge. Virol. J. (2019). https://doi.org/10.1186/s12985-019-1182-0

    Article  Google Scholar 

  168. Liu, D.X., Fung, T.S., Chong, K.K., Shukla, A., & Hilgenfeld, R.: Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 109, 97–109. (2014). https://doi.org/10.1016/j.antiviral.2014.06.013

  169. Linton, N.M., et al.: Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J. Clin. Med. (2020). https://doi.org/10.3390/jcm9020538

    Article  Google Scholar 

  170. Varia, M., et al.: Investigation of a nosocomial outbreak of severe acute respiratory syndrome (SARS) in Toronto, Canada. CMAJ (2003)

    Google Scholar 

  171. Rabi, F.A., et al.: Sars-cov-2 and coronavirus disease 2019: What we know so far. Pathogens (2020). https://doi.org/10.3390/pathogens9030231

    Article  Google Scholar 

  172. Simmons, G., et al.: Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res. (2013). https://doi.org/10.1016/j.antiviral.2013.09.028

    Article  Google Scholar 

  173. Sungnak, W., et al.: SARS-CoV-2 Entry genes are most highly expressed in nasal goblet and ciliated cells within human airways. Ar**v (2020)

    Google Scholar 

  174. Posthuma, C.C., te Velthuis, A.J.W., Snijder, E.J.: Nidovirus RNA polymerases: Complex enzymes handling exceptional RNA genomes. Virus Res. (2017). https://doi.org/10.1016/j.virusres.2017.01.023

    Article  Google Scholar 

  175. Zhou, P., et al.: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature (2020). https://doi.org/10.1038/s41586-020-2012-7

    Article  Google Scholar 

  176. Corman, V.M., et al.: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance (2020). https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

    Article  Google Scholar 

  177. Williams, A.E., Chambers, R.C.: The mercurial nature of neutrophils: still an enigma in ARDS?  Lung cellular and molecular physiology. Am. J. Physiol. 306(3), L217–L230 (2014). https://doi.org/10.1152/ajplung.00311.2013

    Article  Google Scholar 

  178. Channappanavar, R., Perlman, S.: Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars Immunopathol. (2017). https://doi.org/10.1007/s00281-017-0629-x

    Article  Google Scholar 

  179. W., C.Y., et al.: Evaluation of reverse transcription-PCR assays for rapid diagnosis of severe acute respiratory syndrome associated with a novel coronavirus. J. Clin. Microbiol. (2003). https://doi.org/10.1128/JCM.41.10.4521

    Article  Google Scholar 

  180. Pan, Y., Guan, H., Zhou, S., Wang, Y., Li, Q., Zhu, T., Hu, Q., **a, L.: Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan. China. Eur. Radiol.s 30(6), 3306–3309 (2020). https://doi.org/10.1007/s00330-020-06731-x

    Article  Google Scholar 

  181. Chung, M., et al.: CT imaging features of 2019 novel coronavirus (2019-NCoV). Radiology (2020). https://doi.org/10.1148/radiol.2020200230

    Article  Google Scholar 

  182. Woo, P.C.Y., et al.: Differential sensitivities of severe acute respiratory syndrome (SARS) coronavirus spike polypeptide enzyme-linked immunosorbent assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia. J. Clin. Microbiol. (2005). https://doi.org/10.1128/JCM.43.7.3054-3058.2005

    Article  Google Scholar 

  183. Groneberg, D.A., Hilgenfeld, R., Zabel, P.: Molecular mechanisms of severe acute respiratory syndrome (SARS). Respir. Res. (2005). https://doi.org/10.1186/1465-9921-6-8

    Article  Google Scholar 

  184. Lo, M.K., et al.: ‘GS-5734 and its parent nucleoside analog inhibit Filo-Pneumo-, and Paramyxoviruses. Sci. Rep. (2017). https://doi.org/10.1038/srep43395

    Article  Google Scholar 

  185. Sheahan, T.P., et al.: Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. (2020). https://doi.org/10.1038/s41467-019-13940-6

    Article  Google Scholar 

  186. de Wit, E., et al.: Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. U.S.A. (2020). https://doi.org/10.1073/pnas.1922083117

    Article  Google Scholar 

  187. Lo, M.K., et al.: Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Sci. Transl. Med. (2019). https://doi.org/10.1126/scitranslmed.aau9242

    Article  Google Scholar 

  188. Holshue, M.L., et al.: First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. (2020). https://doi.org/10.1056/NEJMoa2001191

    Article  Google Scholar 

  189. Wang, M., et al.: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. (2020). https://doi.org/10.1038/s41422-020-0282-0

    Article  Google Scholar 

  190. Zumla, A., et al.: Coronaviruses-drug discovery and therapeutic options. Nat. Rev. Drug Discovery (2016). https://doi.org/10.1038/nrd.2015.37

    Article  Google Scholar 

  191. De Clercq, E.: New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem. Asian J. (2019). https://doi.org/10.1002/asia.201900841

    Article  Google Scholar 

  192. Chen, L., et al.: Cinanserin is an inhibitor of the 3C-Like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J. Virol. (2005). https://doi.org/10.1128/jvi.79.11.7095-7103.2005

    Article  Google Scholar 

  193. Jo, S., et al.: Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem. (2020). https://doi.org/10.1080/14756366.2019.1690480

    Article  Google Scholar 

  194. Park, J.Y., et al.: Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol. Pharmaceut. Bull. (2012). https://doi.org/10.1248/bpb.b12-00623

    Article  Google Scholar 

  195. Li, W., et al.: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature (2003). https://doi.org/10.1038/nature02145

    Article  Google Scholar 

  196. Mair-Jenkins, J., et al.: The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis. J. Infect. Dis. (2015). https://doi.org/10.1093/infdis/jiu396

    Article  Google Scholar 

  197. Koenig, K.L.: Identify-isolate-inform: A modified tool for initial detection and management of middle east respiratory syndrome patients in the emergency department. Western J. Emerg. Med. (2015). https://doi.org/10.5811/westjem.2015.7.27915

    Article  Google Scholar 

  198. Zhang, L., Liu, Y.: Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol. (2020). https://doi.org/10.1002/jmv.25707

    Article  Google Scholar 

  199. Graham, R.L., Donaldson, E.F., Baric, R.S.: A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. (2013). https://doi.org/10.1038/nrmicro3143

    Article  Google Scholar 

  200. Li, Q., et al.: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. (2020). https://doi.org/10.1056/NEJMoa2001316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajitanshu Vedrtnam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, B.V.S., Jaiswar, A., Bedi, A., Verma, S., Shrivastaw, V.K., Vedrtnam, A. (2021). Applications of Artificial Intelligence and Molecular Immune Pathogenesis, Ongoing Diagnosis and Treatments for COVID-19. In: Oliva, D., Hassan, S.A., Mohamed, A. (eds) Artificial Intelligence for COVID-19. Studies in Systems, Decision and Control, vol 358. Springer, Cham. https://doi.org/10.1007/978-3-030-69744-0_29

Download citation

Publish with us

Policies and ethics

Navigation