Novel-View Human Action Synthesis

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12625))

Included in the following conference series:

Abstract

Novel-View Human Action Synthesis aims to synthesize the movement of a body from a virtual viewpoint, given a video from a real viewpoint. We present a novel 3D reasoning to synthesize the target viewpoint. We first estimate the 3D mesh of the target body and transfer the rough textures from the 2D images to the mesh. As this transfer may generate sparse textures on the mesh due to frame resolution or occlusions. We produce a semi-dense textured mesh by propagating the transferred textures both locally, within local geodesic neighborhoods, and globally, across symmetric semantic parts. Next, we introduce a context-based generator to learn how to correct and complete the residual appearance information. This allows the network to independently focus on learning the foreground and background synthesis tasks. We validate the proposed solution on the public NTU RGB+D dataset. The code and resources are available at https://bit.ly/36u3h4K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://renderpeople.com/, accessed September 2020.

  2. 2.

    In practice, we manually annotate each of the \(N_f\) face into a unique body-part label.

References

  1. Lakhal, M.I., Lanz, O., Cavallaro, A.: View-LSTM: novel-view video synthesis through view decomposition. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 7576–7586 (2019)

    Google Scholar 

  2. Bertel, T., Campbell, N.D.F., Richardt, C.: MegaParallax: casual 360\(^{\circ }\) panoramas with motion parallax. IEEE Trans. Vis. Comput. Graph. 25, 1828–1835 (2019)

    Article  Google Scholar 

  3. Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.: Unsupervised learning of view-invariant action representations. In: Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  4. Rematas, K., Kemelmacher-Shlizerman, I., Curless, B., Seitz, S.: Soccer on your tabletop. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4738–4747 (2018)

    Google Scholar 

  5. Natsume, R., et al.: SiCloPe: silhouette-based clothed people. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4475–4485 (2019)

    Google Scholar 

  6. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu: Pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 2304–2314 (2019)

    Google Scholar 

  7. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. ACM Trans. Graph. (TOG) 38, (2019)

    Google Scholar 

  8. Thies, J., Zollhöfer, M., Theobalt, C., Stamminger, M., Nießner, M.: Image-guided neural object rendering. In: Proceedings of the International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  9. Weng, C.Y., Curless, B., Kemelmacher-Shlizerman, I.: Photo Wake-Up: 3D character animation from a single photo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5901–5910 (2019)

    Google Scholar 

  10. Mustafa, A., Hilton, A.: Semantically coherent co-segmentation and reconstruction of dynamic scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5583–5592 (2017)

    Google Scholar 

  11. Bansal, A., Vo, M., Sheikh, Y., Ramanan, D., Narasimhan, S.: 4D visualization of dynamic events from unconstrained multi-view videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5365–5374 (2020)

    Google Scholar 

  12. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3D human pose and shape from a single image. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 561–578 (2016)

    Google Scholar 

  13. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7122–7131 (2018)

    Google Scholar 

  14. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5607–5616 (2019)

    Google Scholar 

  15. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 2252–2261 (2019)

    Google Scholar 

  16. Pavlakos, G., Kolotouros, N., Daniilidis, K.: TexturePose: supervising human mesh estimation with texture consistency. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 803–812 (2019)

    Google Scholar 

  17. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34, 248:1–248:16 (2015)

    Google Scholar 

  18. Pishchulin, L., Jain, A., Wojek, C., Andriluka, M., Thormälen, T., Schiele, B.: Learning people detection models from few training samples. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1473–1480 (2011)

    Google Scholar 

  19. Xu, F., et al.: Video-based characters: creating new human performances from a multi-view video database. ACM Trans. Graph. (TOG) 30, 32:1–32:10 (2011)

    Google Scholar 

  20. Siarohin, A., Lathuillère, S., Tulyakov, S., Ricci, E., Sebe, N.: first order motion model for image animation. In: Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  21. Chen, X., Song, J., Hilliges, O.: Monocular neural image based rendering with continuous view control. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 4089–4099 (2019)

    Google Scholar 

  22. Bhatnagar, B.L., Tiwari, G., Theobalt, C., Pons-Moll, G.: Multi-garment net: learning to dress 3D people from images. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 5419–5429 (2019)

    Google Scholar 

  23. Alldieck, T., Magnor, M., Bhatnagar, B.L., Theobalt, C., Pons-Moll, G.: Learning to reconstruct people in clothing from a single RGB camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1175–1186 (2019)

    Google Scholar 

  24. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3D people models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8387–8397 (2018)

    Google Scholar 

  25. Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., Van Gool, L.: Pose guided person image generation. In: Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  26. Zhao, B., Wu, X., Cheng, Z.Q., Liu, H., Jie, Z., Feng, J.: Multi-view image generation from a single-view. In: Proceedings of the ACM International Conference on Multimedia (ACM-MM), pp. 383–391 (2018)

    Google Scholar 

  27. Zanfir, M., Oneata, E., Popa, A.I., Zanfir, A., Sminchisescu, C.: Human synthesis and scene compositing. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 12749–12756 (2020)

    Google Scholar 

  28. Liu, W., Piao, Z., Jie, M., Luo, W., Ma, L., Gao, S.: Liquid war** GAN: a unified framework for human motion imitation, appearance transfer and novel view synthesis. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 5903–5912 (2019)

    Google Scholar 

  29. Li, Y., Huang, C., Loy, C.C.: Dense intrinsic appearance flow for human pose transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3688–3697 (2019)

    Google Scholar 

  30. Saito, M., Matsumoto, E., Saito, S.: Temporal generative adversarial nets with singular value clip**. In: Proceedings of the International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  31. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1526–1535 (2018)

    Google Scholar 

  32. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Neural Information Processing Systems (NeurIPS) (2016)

    Google Scholar 

  33. Yang, C., Wang, Z., Zhu, X., Huang, C., Shi, J., Lin, D.: Pose guided human video generation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 204–219 (2018)

    Google Scholar 

  34. Wang, T.C., Liu, M.Y., Tao, A., Liu, G., Kautz, J., Catanzaro, B.: Few-shot video-to-video synthesis. In: Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  35. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Flow-grounded spatial-temporal video prediction from still images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 609–625 (2018)

    Google Scholar 

  36. Raaj, Y., Idrees, H., Hidalgo, G., Sheikh, Y.: Efficient online multi-person 2D pose tracking with recurrent spatio-temporal affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4615–4623 (2019)

    Google Scholar 

  37. Yang, L., Song, Q., Wang, Z., Jiang, M.: Parsing r-cnn for instance-level human analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 364–373 (2019)

    Google Scholar 

  38. Siarohin, A., Sangineto, E., Lathuilière, S., Sebe, N.: Deformable GANs for pose-based human image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3408–3416 (2018)

    Google Scholar 

  39. Pumarola, A., Agudo, A., Sanfeliu, A., Moreno-Noguer, F.: Unsupervised person image synthesis in arbitrary poses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8620–8628 (2018)

    Google Scholar 

  40. Liqian, M., Qianru, S., Stamatios, G., Luc, V.G., Bernt, S., Mario, F.: Disentangled Person Image Generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 99–108 (2018)

    Google Scholar 

  41. Chan, C., Ginosar, S., Zhou, T., Efros, A.A.: Everybody dance now. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 5932–5941 (2019)

    Google Scholar 

  42. Esser, P., Sutter, E., Ommer, B.: A variational u-net for conditional appearance and shape generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8857–8866 (2018)

    Google Scholar 

  43. Balakrishnan, G., Zhao, A., Dalca, A.V., Durand, F., Guttag, J.: Synthesizing images of humans in unseen poses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8340–8348 (2018)

    Google Scholar 

  44. Qian, X., et al.: Pose-normalized image generation for person re-identification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 661–678 (2018)

    Google Scholar 

  45. Raj, A., Sangkloy, P., Chang, H., Hays, J., Ceylan, D., Lu, J.: SwapNet: image based garment transfer. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 679–695 (2018)

    Google Scholar 

  46. Dong, H., Liang, X., Gong, K., Lai, H., Zhu, J., Yin, J.: Soft-gated war**-GAN for pose-guided person image synthesis. In: Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  47. Alp Güler, R., Neverova, N., Kokkinos, I.: DensePose: dense human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7297–7306 (2018)

    Google Scholar 

  48. Neverova, N., Alp Guler, R., Kokkinos, I.: Dense pose transfer. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 128–143 (2018)

    Google Scholar 

  49. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3d human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1010–1019 (2016)

    Google Scholar 

  50. Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3907–3916 (2018)

    Google Scholar 

  51. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Trans. Graph. (TOG) 24, 553–560 (2005)

    Google Scholar 

  52. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)

    Article  MathSciNet  Google Scholar 

  53. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 694–711 (2016)

    Google Scholar 

  54. Goodfellow, I., et al.: Generative adversarial nets. In: Neural Information Processing Systems (NeurIPS), pp. 2672–2680 (2014)

    Google Scholar 

  55. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  56. Unterthiner, T., van Steenkiste, S., Kurach, K., Marinier, R., Michalski, M., Gelly, S.: FVD: a new metric for video generation. In: Proceedings of the International Conference on Learning Representations (ICLR) Workshops (2019)

    Google Scholar 

  57. Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of parts. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35, 2878–2890 (2013)

    Article  Google Scholar 

  58. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  59. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 2242–2251 (2017)

    Google Scholar 

  60. Che, T., Li, Y., Jacob, A.P., Bengio, Y., Li, W.: Mode regularized generative adversarial networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

Download references

Acknowledgements

This project acknowledges the use of the ESPRC funded Tier 2 facility, JADE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ilyes Lakhal .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7767 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lakhal, M.I., Boscaini, D., Poiesi, F., Lanz, O., Cavallaro, A. (2021). Novel-View Human Action Synthesis. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69538-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69537-8

  • Online ISBN: 978-3-030-69538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation