Efficient Generation of a Card-Based Uniformly Distributed Random Derangement

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2021)

Abstract

Consider a situation, known as Secret Santa, where n players wish to exchange gifts such that each player receives exactly one gift and no one receives a gift from oneself. Each player only wants to know in advance for whom he/she should purchase a gift. That is, the players want to generate a hidden uniformly distributed random derangement. (Note that a permutation without any fixed points is called a derangement.) To solve this problem, in 2015, Ishikawa et al. proposed a simple protocol with a deck of physical cards. In their protocol, players first prepare n piles of cards, each of which corresponds to a player, and shuffle the piles. Subsequently, the players verify whether the resulting piles have fixed points somehow: If there is no fixed point, the piles serve as a hidden random derangement; otherwise, the players restart the shuffle process. Such a restart occurs with a probability of approximately 0.6. In this study, we consider how to decrease the probability of the need to restart the shuffle based on the aforementioned protocol. Specifically, we prepare more piles of cards than the number n of players. This potentially helps us avoid repeating the shuffle, because we can remove fixed points even if they arise (as long as the number of remaining piles is at least n). Accordingly, we propose an efficient protocol that generates a uniformly distributed random derangement. The probability of the need to restart the shuffle can be reduced to approximately 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boer, B.: More efficient match-making and satisfiability the five card trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

    Chapter  Google Scholar 

  2. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_27

    Chapter  Google Scholar 

  3. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput. Syst. 44(2), 245–268 (2009)

    Article  MathSciNet  Google Scholar 

  4. Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward finite-runtime card-based protocol for generating a hidden random permutation without fixed points. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E101.A, 1503–1511 (2018)

    Google Scholar 

  5. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grou** protocol using a deck of cards. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 135–152. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72089-0_8

    Chapter  Google Scholar 

  6. Heather, J., Schneider, S., Teague, V.: Cryptographic protocols with everyday objects. Formal Aspects Comput. 26, 37–62 (2014)

    Article  Google Scholar 

  7. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation without fixed points. In: 2016 Third International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), pp. 252–257, August 2016

    Google Scholar 

  8. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16

    Chapter  Google Scholar 

  9. Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical card-based implementations of Yao’s millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020)

    Article  MathSciNet  Google Scholar 

  10. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms. Leibniz International Proceedings in Informatics, LIPIcs, Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, September 2020

    Google Scholar 

  11. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

    Chapter  Google Scholar 

  12. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 500–517. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_30

    Chapter  Google Scholar 

  13. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the millionaires’ problem using private input operations. In: 2018 13th Asia Joint Conference on Information Security (AsiaJCIS), pp. 23–28, August 2018

    Google Scholar 

  14. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private operations. New Gener. Comput. (2020, in press). https://doi.org/10.1007/s00354-020-00113-z

  15. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge proof for Suguru puzzle. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 235–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_19

    Chapter  Google Scholar 

  16. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink puzzle and k vertex-disjoint paths problem. New Gener. Comput. (2020, in press). https://doi.org/10.1007/s00354-020-00114-y

  17. Ryan, P.Y.A.: Crypto Santa. In: Ryan, P.Y.A., Naccache, D., Quisquater, J.-J. (eds.) The New Codebreakers. LNCS, vol. 9100, pp. 543–549. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49301-4_33

    Chapter  Google Scholar 

  18. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We thank the anonymous referees, whose comments have helped us to improve the presentation of the paper. This work was supported in part by JSPS KAKENHI Grant Number JP19J21153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki Miyahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murata, S., Miyahara, D., Mizuki, T., Sone, H. (2021). Efficient Generation of a Card-Based Uniformly Distributed Random Derangement. In: Uehara, R., Hong, SH., Nandy, S.C. (eds) WALCOM: Algorithms and Computation. WALCOM 2021. Lecture Notes in Computer Science(), vol 12635. Springer, Cham. https://doi.org/10.1007/978-3-030-68211-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68211-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68210-1

  • Online ISBN: 978-3-030-68211-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation