Biominerals and Biomaterials

  • Chapter
  • First Online:
Minerals latu sensu and Human Health

Abstract

Distinction is made between biominerals and true minerals or minerals strictu sensu (s.s.), the first formed by the action of biological or cellular activity, the second formed in the natural environment without human intervention. Biominerals are products of a process called biomineralization and are classified into two categories: bio-essential biominerals forming bones and teeth and pathological biominerals forming the so-called calculi or stones in the kidney, vesica, bladder, gallbladder and in joints, the first providing positive physiological effects, the second providing negative physiological effects and health disorders. This chapter describes the great variety of biominerals, their formation, physical and chemical constitution, and function. The so-called ectopic biomineralization is dealt with too. In particular the chemistry and the causes of pathological biominerals formation are enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akat K, Borggrefe M, Kaden JJ (2009) Aortic valve calcification: basic science to clinical practice. Heart 95(8):616–623

    Article  Google Scholar 

  • Beer S, Saely CH, Hoefle G, rein P, Vonbank A, Breuss J, Gaensbacher B, Muendlein A, Drexel H (2010) Low bone mineral density is not associated with angiographically determined coronary atherosclerosis in men. Osteoporos Int 21:1695–1701

    Article  Google Scholar 

  • Beniash E (2011) Biominerals-hierarchical nanocomposites: the example of bone. Rev Nanomed Nanobiotechnol 3(1):47–69

    Article  Google Scholar 

  • Boskey AL (2007) Mineralization of bones and teeth. Elements 3:385–391

    Article  Google Scholar 

  • Carretero I, Pozo M (2007) Mineralogia Aplicada: Salud y Medio Ambiente. Thomson (editor), Madrid, 406pp

    Google Scholar 

  • Combes C, Cazalbon S, Rey C (2016) Apatite biominerals. Minerals 6(2):34. https://doi.org/10.3390/min6020034

    Article  Google Scholar 

  • Cottignoli V, Cavarretta E, Salvador L, Valfré C, Maras A (2015a) Morphological and chemical study of pathological deposits in human aortic and mitral valve stenosis: a biomineralogical contribution. Pathology Research International 15, Article ID 342984, 14pp

    Google Scholar 

  • Cottignoli V, Cavarretta E, Salvador L, Valfré C, Maras A (2015b) Biological Niches within Human CalcifiedAortic Valves: towards Understanding of the Pathological Biomineralization Process. Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 542687, 10 pages https://doi.org/10.1155/2015/542687

  • Demichelis R, Schuitemaker A, Garcia NA, Koziara K, De La Pierre M, Raiteri P, Gale JD (2018) Simulation of crystallization of biominerals. Annu Rev Mater Res 48:327–352

    Article  Google Scholar 

  • Dove PM (2010) The rise of skeletal biominerals. Elements 6(1):37–42

    Article  Google Scholar 

  • Elliot JC (2002) Calcium phosphate biominerals. Rev Mineral Geochem 48(1):427–453

    Article  Google Scholar 

  • Endo K, Kogure T, Nagasawa H (2018) Biomineralization: from molecular and Nano-structural analyses to environmental science. Springer Open, Springer Nature Singapore Pte Ltd. ISBN: 978-981-13-1001-0

    Google Scholar 

  • Giannossi ML, Summa V (2012) A Review of Pathological Biomineral Analysis Techniques and Classification Schemes. Chapter 7 of the book “An Introduction to the Study of Mineralogy”, Aydinalp C (editor), IntechOpen

    Google Scholar 

  • Glimcher MJ (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. In Medical Mineralogy and Geochemistry, Sahai N & Schoonen (eds), Reviews in mineralogy & geochemistry, vol 64, pp 223–282. Geochemical Society & Mineralogical Society of America

    Google Scholar 

  • Hajsadeghi S, Khamseh M-E, Larijani B, Abedin B, Vakili-Zarch A, Meysamie A-P, Yazdanpanah F (2011) Bone mineral density and coronary atherosclerosis. J Saudi Heart Assoc 23:143–146

    Article  Google Scholar 

  • Hannache B (2014) La tithiase urinaire: epidemiologie, rôle des elements traces et des plantes médicinales. Thèse de Doctorat, Université Paris-Sud 11

    Google Scholar 

  • Hsu Y-C, Ln Y-H, Shiau L-D (2020) Effects of various inhibitors on the nucleation of calcium oxalate in synthetic urine. Crystals 10:333. https://doi.org/10.3390/cryst10040333

    Article  Google Scholar 

  • Jono S, Shioi A, Ikari Y, Nishizawa Y (2006) Vascular calcification in chronic kidney disease. J Bone Minr Metab 24(2):176–181

    Article  Google Scholar 

  • Labarthe JC, Bonel G, Montel G (1973) Structure and properties of B-type phosphocalcium carbonate apatites. Ann Chim 8:289–301

    Google Scholar 

  • Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adva Dry Deliv Rev 59(4–5):339–359

    Article  Google Scholar 

  • Pierre-Louis B, Aronow WS, Yoon JH, Ahn C, Deluca AJ (2009) Relation of bone mineral density to stress test-induced myocardial ischemia. Am J Cardiol 104(2):199–201

    Article  Google Scholar 

  • Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Advanced materials. Willey-VCH Verlag, Weinheim, pp 1–27

    Google Scholar 

  • Potarniche CG, Vuluga Z, Donescu D, Christiansen JdeC, Eugeniu V, Radovici C, Serban S, Ghiurea M, Somoghi R, Beckmann S (2011) Morphology study of layered Silicate/Chitosan nanohybrids. Surface and Interface Analysis, (May 2011), Early View, Online Version, ISSN 1096-9918

    Google Scholar 

  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Rayamannan NM (2009) Calcific aortic stenosis: lessons learned from experimental and clinical studies. Arterioscler Thromb Vasc Biol 29:162–168

    Article  Google Scholar 

  • Salgado AJ, Oliveira JM, Martins A, Teixeira FG, Silva NA, Neves NM, Sousa N, Reis RL (2013) In: Stefano Geuna IPPT, Bruno B (ed) International review of neurobiology, Academic, vol. 108, pp 1–33

    Google Scholar 

  • Shin H, Seongbong JO, Mikos AG (2003) Biomimetic biomaterials for tissue engineering. Biomaterials 24(24):4353–4364

    Article  Google Scholar 

  • Skinner HCW (2000) Minerals and human health. In: Vaughan J, Wogelius RA (eds) EMU notes in mineralogy 2, environmental mineralogy. Eotvos University Press, Budapest, pp 383–412

    Google Scholar 

  • Skinner HCW (2005) Biominerals. Mineral Mag 69(5):621–641

    Article  Google Scholar 

  • Sun JB, Duan JH, Dai SL, Ren J, Guo L, Jiang W (2008) Preparation and anti-tumor efficiency evaluation of doxorubicin loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. Biotechnol Bioeng 101(6):1313–1320

    Article  Google Scholar 

  • Varma R, Aronow WS, basis Y, Singh T, Kalapatapu K, Weiss MB, Pucillo AL, Monsen CE (2008) relation of bone mineral density to frequency of coronary heart disease. Am J Cardiol 101, 1103–1104

    Google Scholar 

  • Vereda F, Vicente J, Hidalgo-Álvarez R (2009) Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies. Chem Europe, 10(8), 1165–1179

    Google Scholar 

  • Vuluga Z, Sanporean C-G, Albu MG, Trandafir V, Iordachescu D, Vaside E (2012) Collagen-Modified Layered Silicate Biomaterials for Regenerative Medicine of bone Tissue. Chapter 6 In: “Materials Science and Technology”

    Google Scholar 

  • William DF (1987) Definitions in Biomaterials. Progress in Biomedical Engineering 4, 72pp. Elsevier, Amsterdam

    Google Scholar 

  • Winand L (1961) Étude physic-chimique du phosphate tricalcique hydraté et de l´‘hydroxyapatite. Ann Chim 6:951–967

    Google Scholar 

  • Yan L, Zhang S, Chen P, Liu H, Yin H, Li H (2012) Magnetotatic bacteria, magnetosomes and their applications. Microbiological Research, Elsevier 167:507–519

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso S. F. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, C.S.F., Silva, J.B.P. (2021). Biominerals and Biomaterials. In: Gomes, C., Rautureau, M. (eds) Minerals latu sensu and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-65706-2_11

Download citation

Publish with us

Policies and ethics

Navigation