Weakly-Supervised Lesion-Aware and Consistency Regularization for Retinitis Pigmentosa Detection from Ultra-Widefield Images

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12069))

Included in the following conference series:

  • 2544 Accesses

Abstract

Retinitis pigmentosa (RP) is one of the most common retinal diseases caused by gene defects, which can lead to night blindness or complete blindness. Accurate diagnosis and lesion identification are significant tasks for clinicians to assess fundus images. However, due to some limitations, it is still challenging to design a method that can simultaneously diagnose and accomplish lesion identification so that the accurate lesion identification can promote the accuracy of diagnosis. In this paper, we propose a method based on weakly-supervised lesion-aware and consistency regularization to detect RP and generate lesion attention map (LAM). Specifically, we extend global average pooling to multiple scales, and use multi-scale features to offset the gap between semantic information and spatial information to generate a more refined LAM. At the same time, we regularize LAMs with different affine transforms for the same sample, and force them to produce more accurate predictions and reduce the overconfidence of the network, which can enhance LAM to cover lesions. We use two central datasets to verify the effectiveness of the proposed model. We train the proposed model in one dataset and test it in the other dataset to verify the generalization performance. Experimental results show that our method achieves promising performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartong, D.T., Berson, E.L., Dryja, T.P.: Retinitis pigmentosa. Lancet 368, 1795–1809 (2006)

    Article  Google Scholar 

  2. Cicinelli, M.V., Marchese, A., Bordato, A., Manitto, M.P., Bandello, F., Parodi, M.B.: Reviewing the role of ultra-widefield imaging in inherited retinal dystrophies. Ophthalmol. Ther. 1–15 (2020)

    Google Scholar 

  3. Olthoff, C.M., Schouten, J.S., van de Borne, B.W., Webers, C.A.: Noncompliance with ocular hypotensive treatment in patients with glaucoma or ocular hypertension: an evidence-based review. Ophthalmology 112, 953–961, e957 (2005)

    Google Scholar 

  4. Nagasato, D., et al.: Hayashi: deep neural network-based method for detecting central retinal vein occlusion using ultrawide-field fundus ophthalmoscopy. J. Ophthalmol. 2018 (2018)

    Google Scholar 

  5. Masumoto, H., et al.: Accuracy of a deep convolutional neural network in detection of retinitis pigmentosa on ultrawide-field images. PeerJ 7, e6900 (2019)

    Article  Google Scholar 

  6. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  7. Liao, W., Zou, B., Zhao, R., Chen, Y., He, Z., Zhou, M.: Clinical interpretable deep learning model for glaucoma diagnosis. IEEE J. Biomed. Health Inform. 24, 1405–1412 (2019)

    Article  Google Scholar 

  8. Wang, Z., Yin, Y., Shi, J., Fang, W., Li, H., Wang, X.: Zoom-in-net: deep mining lesions for diabetic retinopathy detection. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 267–275. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_31

    Chapter  Google Scholar 

  9. Zhao, R., Liao, W., Zou, B., Chen, Z., Li, S.: Weakly-supervised simultaneous evidence identification and segmentation for automated glaucoma diagnosis. In: AAAI, pp. 809–816 (2019)

    Google Scholar 

  10. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)

    Google Scholar 

  11. Tang, M., Perazzi, F., Djelouah, A., Ayed, I.B., Schroers, C., Boykov, Y.: On Regularized losses for weakly-supervised CNN segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 524–540. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_31

    Chapter  Google Scholar 

  12. Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In: CVPR, pp. 12275–12284 (2020)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  14. Masahiro, K.: masumoto RP data normal optos (2018). https://figshare.com/articles/masumoto_RP_data_normal_optos/7403825

  15. Masahiro, K.: masumoto RP data RP optos (2018). https://figshare.com/articles/masumoto_RP_data_RP_optos/7403831

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  17. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported partly by National Natural Science Foundation of China (Nos. 61871274, 61801305 and 81571758), National Natural Science Foundation of Guangdong Province (No. 2020A1515010649 and No. 2019A1515 111205), Guangdong Province Key Laboratory of Popular High Performance Computers (No. 2017B030314073), Guangdong Laboratory of Artificial-Intelligence and Cyber-Economics (SZ), Shenzhen Peacock Plan (Nos. KQTD2016053112051497 and KQTD2015033016104926), Shenzhen Key Basic Research Project (Nos. JCYJ201908 08165209410, 20190808145011259, JCYJ20180507184647636, GJHZ20190822095 414576 and JCYJ20170302153337765, JCYJ20170302150411789, JCYJ2017030214 2515949, GCZX2017040715180580, GJHZ20180418190529516, and JSGG2018050 7183215520), NTUT-SZU Joint Research Program (No. 2020003), Special Project in Key Areas of Ordinary Universities of Guangdong Province (No. 2019KZDZX1015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiying Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, B. et al. (2020). Weakly-Supervised Lesion-Aware and Consistency Regularization for Retinitis Pigmentosa Detection from Ultra-Widefield Images. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science(), vol 12069. Springer, Cham. https://doi.org/10.1007/978-3-030-63419-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63419-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63418-6

  • Online ISBN: 978-3-030-63419-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation