Data Augmentation Using Principal Component Resampling for Image Recognition by Deep Learning

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2020)

Abstract

Image recognition by deep learning usually requires many sample images to train. In case of a small number of images available for training, data augmentation techniques should be applied. Here we propose a novel image augmentation technique based on a random permutation of coefficients of within-class principal components obtained after applying Principal Component Analysis (PCA). After reconstruction, newly generated surrogate images are employed to train a deep network. In this study, we demonstrated the applicability of our approach on training a custom convolutional neural network using the CIFAR-10 image dataset. The experimental results show an improvement in terms of classification accuracy and classification ambiguity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  2. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

    Article  MathSciNet  Google Scholar 

  3. Ayinde, B.O., Inanc, T., Zurada, J.M.: Regularizing deep neural networks by enhancing diversity in feature extraction. IEEE Trans. Neural Netw. Learning Syst. 30(9), 2650–2661 (2019). https://doi.org/10.1109/TNNLS.2018.2885972

    Article  Google Scholar 

  4. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019). https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  5. Qi, G.-J., Luo, J.: Small data challenges in big data era: a survey of recent progress on unsupervised and semi-supervised methods. CoRR abs/1903.11260 (2019)

    Google Scholar 

  6. Leng, B., Yu, K., **gyan, Q.I.N.: Data augmentation for unbalanced face recognition training sets. Neurocomputing 235, 10–14 (2017)

    Article  Google Scholar 

  7. Chen, H.Y., Li, D.C., Lin, L. S.: Extending sample information for small data set prediction. In: 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), pp. 710–714 (2016)

    Google Scholar 

  8. Truong, T.N., Dam, V.D., Le, T.S.: Medical images sequence normalization and augmentation: improve liver tumor segmentation from small dataset. In: 3rd International Conference on Control, Robotics and Cybernetics (CRC), pp. 1–5 (2018)

    Google Scholar 

  9. Li, W., Chen, C., Zhang, M., Li, H., Du, Q.: Data augmentation for hyperspectral image classification with deep CNN. IEEE Geosci. Remote Sens. Lett. 16(4), 593–597 (2019)

    Article  Google Scholar 

  10. Haut, J.M., Paoletti, M.E., Plaza, J., Plaza, A., Li, J.: Hyperspectral image classification using random occlusion data augmentation. IEEE Geosci. Remote Sens. Lett. 16(11), 1751–1755 (2019). https://doi.org/10.1109/LGRS.2019.2909495

    Article  Google Scholar 

  11. Dirvanauskas, D., Maskeliūnas, R., Raudonis, V., Damaševičius, R., Scherer, R.: Hemigen: human embryo image generator based on generative adversarial networks. Sensors 19(16), 3578 (2019)

    Article  Google Scholar 

  12. Womg, A., Shafiee, M.J., Li, F., Chwyl, B.: Tiny SSD: a tiny single-shot detection deep convolutional neural network for real-time embedded object detection. In: 15th Conference on Computer and Robot Vision (CRV), Toronto, ON, pp. 95–101 (2018)

    Google Scholar 

  13. Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artif. Intell. 137(1–2), 239–263 (2002). https://doi.org/10.1016/s0004-3702(02)00190-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Amory, A.A., Muhammad, G., Mathkour, H.: Deep convolutional tree networks. Future Generation Comput. Syst. 101, 152–168 (2019). https://doi.org/10.1016/j.future.2019.06.010

    Article  Google Scholar 

  15. Basha, S.H.S., Dubey, S.R., Pulabaigari, V., Mukherjee, S.: Impact of fully connected layers on performance of convolutional neural networks for image classification. Neurocomputing 378, 112–119 (2019). https://doi.org/10.1016/j.neucom.2019.10.008

    Article  Google Scholar 

  16. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto, Canada (2009)

    Google Scholar 

  17. Mordvintsev, A., Olah C., Tyka, M.: Inceptionism: Going deeper into neural networks. Google research blog (2015)

    Google Scholar 

  18. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. ar**v:1302.4389 (2013)

  19. Huang, G., Liu, Z., Weinberger, K. Q., van der Maaten, L.: Densely connected convolutional networks. ar**v preprint ar**v:1608.06993 (2016)

  20. Zagoruyko, S., Komodakis, N.: Wide residual networks. ar**v:1605.07146 (2016)

  21. Najgebauer, P., Grycuk, R., Rutkowski, L., Scherer, R., Siwocha, A.: Microscopic sample segmentation by fully convolutional network for parasite detection. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, Jacek M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 164–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20912-4_16

    Chapter  Google Scholar 

  22. Aizenberg, I., Luchetta, A., Manetti, S., Piccirilli, M.C.: A MLMVN with arbitrary complex-valued inputs and a hybrid testability approach for the extraction of lumped models using FRA. J. Artif. Intell. Soft Comput. Res. 9(1), 5–19 (2019)

    Article  Google Scholar 

  23. Costa, M., Oliveira, D., Pinto, S., Tavares, A.: Detecting driver’s fatigue, distraction and activity using a non-intrusive Ai-based monitoring system. J. Artif. Intell. Soft Comput. Res. 9(4), 247–266 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge contribution to this project of the Program “Best of the Best 4.0” from the Polish Ministry of Science and Higher Education No. MNiSW/2020/43/DIR/NN4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Woźniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abayomi-Alli, O.O., Damaševičius, R., Wieczorek, M., Woźniak, M. (2020). Data Augmentation Using Principal Component Resampling for Image Recognition by Deep Learning. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12416. Springer, Cham. https://doi.org/10.1007/978-3-030-61534-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61534-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61533-8

  • Online ISBN: 978-3-030-61534-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation