DAPR-Net: Domain Adaptive Predicting-Refinement Network for Retinal Vessel Segmentation

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning (DART 2020, DCL 2020)

Abstract

The convolutional neural networks (CNN) have been used in various medical image segmentation tasks. However, the training of CNN extremely relies on large amounts of sample images and precisely annotated labels, which is difficult to get in medical field. Domain adaptation can utilize limited labeled images of source domain to improve the performance of target domain. In this paper, we propose a novel domain adaptive predicting-refinement network called DAPR-Net to perform domain adaptive segmentation task on retinal vessel images. In order to mitigate the gap between two domains, the Contrast Limited Adaptive Histogram Equalization (CLAHE) is employed in the preprocessing operations. Since the segmentation result generated by only predicting module can be affected by domain shift, refinement module is used to produce more precise segmentation results and further reduce the harmful impact of domain shift. Atrous convolution is also adopted in both predicting module and refinement module to capture wider and deeper semantic features. Our method has advantages over previous works based on adversarial networks, because in our method smoothing domain shift with preprocessing has little overhead and the data from target domain is not needed when training. Experiments on different retinal vessel datasets demonstrate that the proposed method improves accuracy of segmentation results in dealing with domain shift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhuang, J., Chen, Z., Zhang, J., Zhang, D., Cai, Z.: Domain adaptation for retinal vessel segmentation using asymmetrical maximum classifier discrepancy. In: Proceedings of the ACM Turing Celebration Conference-China, pp. 1–6, May 2019

    Google Scholar 

  2. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  3. Tajbakhsh, N., Lai, B., Ananth, S., Ding, X.: ErrorNet: learning error representations from limited data to improve vascular segmentation. ar**v preprint ar**v:1910.04814 (2019)

  4. Javanmardi, M., Tasdizen, T.: Domain adaptation for biomedical image segmentation using adversarial training. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 554–558. IEEE, April 2018

    Google Scholar 

  5. Pisano, E.D., et al.: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J. Digit. Imaging 11(4), 193 (1998). https://doi.org/10.1007/BF03178082

    Article  Google Scholar 

  6. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. ar**v preprint ar**v:1706.05587 (2017)

  7. Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  8. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 865–872, July 2019

    Google Scholar 

  9. Dong, N., Kampffmeyer, M., Liang, X., Wang, Z., Dai, W., **ng, E.: Unsupervised domain adaptation for automatic estimation of cardiothoracic ratio. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 544–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_61

    Chapter  Google Scholar 

  10. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. ar**v preprint ar**v:1711.03213 (2017)

  11. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  12. Liu, P., Kong, B., Li, Z., Zhang, S., Fang, R.: CFEA: collaborative feature ensembling adaptation for domain adaptation in unsupervised optic disc and cup segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 521–529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_58

    Chapter  Google Scholar 

  13. Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: BASNet: boundary-aware salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7479–7489 (2019)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S.N., Chellappa, R.: Unsupervised domain adaptation for semantic segmentation with GANs. ar**v preprint ar**v:1711.06969 (2017)

  16. Son, J., Park, S.J., Jung, K.H.: Retinal vessel segmentation in fundoscopic images with generative adversarial networks. ar**v preprint ar**v:1706.09318 (2017)

  17. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  18. Wu, Z., et al.: DCAN: dual channel-wise alignment networks for unsupervised scene adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 535–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_32

    Chapter  Google Scholar 

  19. Zhang, Y., Qiu, Z., Yao, T., Liu, D., Mei, T.: Fully convolutional adaptation networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6810–6818 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z., Mao, H., Jiang, N., Wang, X. (2020). DAPR-Net: Domain Adaptive Predicting-Refinement Network for Retinal Vessel Segmentation. In: Albarqouni, S., et al. Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning. DART DCL 2020 2020. Lecture Notes in Computer Science(), vol 12444. Springer, Cham. https://doi.org/10.1007/978-3-030-60548-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60548-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60547-6

  • Online ISBN: 978-3-030-60548-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation