Mean Field Games and Applications: Numerical Aspects

  • Chapter
  • First Online:
Mean Field Games

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2281))

  • 3390 Accesses

Abstract

The theory of mean field games aims at studying deterministic or stochastic differential games (Nash equilibria) as the number of agents tends to infinity. Since very few mean field games have explicit or semi-explicit solutions, numerical simulations play a crucial role in obtaining quantitative information from this class of models. They may lead to systems of evolutive partial differential equations coupling a backward Bellman equation and a forward Fokker–Planck equation. In the present survey, we focus on such systems. The forward-backward structure is an important feature of this system, which makes it necessary to design unusual strategies for mathematical analysis and numerical approximation. In this survey, several aspects of a finite difference method used to approximate the previously mentioned system of PDEs are discussed, including convergence, variational aspects and algorithms for solving the resulting systems of nonlinear equations. Finally, we discuss in details two applications of mean field games to the study of crowd motion and to macroeconomics, a comparison with mean field type control, and present numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.M. Lasry, P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)

    Article  MATH  Google Scholar 

  2. J.-M. Lasry, P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

    Article  MATH  Google Scholar 

  3. J.-M. Lasry, P.-L. Lions, Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Cardaliaguet, Notes on Mean Field Games (2011), preprint

    Google Scholar 

  5. P. Cardaliaguet, P. Jameson Graber, A. Porretta, D. Tonon, Second order mean field games with degenerate diffusion and local coupling. NoDEA Nonlinear Differential Equations Appl. 22(5), 1287–1317 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Porretta, Weak Solutions to Fokker–Planck Equations and Mean Field Games. Arch. Ration. Mech. Anal. 216(1), 1–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. P.-L. Lions, Cours du Collège de France (2007–2011). https://www.college-de-france.fr/site/en-pierre-louis-lions/_course.htm

  8. P. Cardaliaguet, F. Delarue, J.-M. Lasry, P.-L. Lions, The Master Equation and the Convergence Problem in Mean Field Games. Annals of Mathematics Studies, vol. 201 (Princeton University, Princeton, 2019)

    Google Scholar 

  9. Y. Achdou, I. Capuzzo-Dolcetta, Mean field games: numerical methods. SIAM J. Numer. Anal. 48(3), 1136–1162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Achdou, J.-M. Lasry, Mean field games for modeling crowd motion, in Contributions to Partial Differential Equations and Applications, chapter 4 (Springer, Berlin, 2019), pp. 17–42

    Google Scholar 

  11. Y. Achdou, F. Camilli, I. Capuzzo-Dolcetta, Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50(1), 77–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Achdou, F. Camilli, I. Capuzzo-Dolcetta, Mean field games: convergence of a finite difference method. SIAM J. Numer. Anal. 51(5), 2585–2612 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Achdou, A. Porretta, Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games. SIAM J. Numer. Anal. 54(1), 161–186 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Cardaliaguet, P. Jameson Graber, Mean field games systems of first order. ESAIM Control Optim. Calc. Var. 21(3), 690–722 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. L.M. Briceño Arias, D. Kalise, Z. Kobeissi, M. Laurière, Á.M. González, F.J. Silva, On the implementation of a primal-dual algorithm for second order time-dependent mean field games with local couplings. ESAIM: ProcS 65, 330–348 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Achdou, Finite difference methods for mean field games, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Lecture Notes in Mathematical, vol. 2074 (Springer, Heidelberg, 2013), pp. 1–47

    Google Scholar 

  17. L.M. Briceño Arias, D. Kalise, F.J. Silva, Proximal methods for stationary mean field games with local couplings. SIAM J. Control Optim. 56(2), 801–836 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. R.T. Rockafellar, Convex Analysis. Princeton Landmarks in Mathematics (Princeton University, Princeton, 1997). Reprint of the 1970 original, Princeton Paperbacks

    Google Scholar 

  19. M. Fortin, R. Glowinski, Augmented Lagrangian methods. Studies in Mathematics and its Applications, vol. 15 (North-Holland, Amsterdam, 1983). Applications to the numerical solution of boundary value problems, Translated from the French by B. Hunt and D.C. Spicer

    Google Scholar 

  20. J.-D. Benamou, Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. J.-D. Benamou, G. Carlier, Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167(1), 1–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Andreev, Preconditioning the augmented Lagrangian method for instationary mean field games with diffusion. SIAM J. Sci. Comput. 39(6), A2763–A2783 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Achdou, M. Laurière, Mean field type control with congestion (II): an augmented Lagrangian method. Appl. Math. Optim. 74(3), 535–578 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3, Ser. A), 293–318 (1992)

    Google Scholar 

  25. A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. U. Trottenberg, C.W. Oosterlee, A. Schüller, Multigrid (Academic Press, San Diego, 2001). With contributions by A. Brandt, P. Oswald, K. Stüben

    Google Scholar 

  27. Y. Achdou, V. Perez, Iterative strategies for solving linearized discrete mean field games systems. Netw. Heterog. Media 7(2), 197–217 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. H.A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Porretta, E. Zuazua, Long time versus steady state optimal control. SIAM J. Control Optim. 51(6), 4242–4273 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, A. Porretta, Long time average of mean field games. Netw. Heterog. Media 7(2), 279–301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, A. Porretta, Long time average of mean field games with a nonlocal coupling. SIAM J. Control Optim. 51(5), 3558–3591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. J.-F. Chassagneux, D. Crisan, F. Delarue, Numerical method for FBSDEs of McKean-Vlasov type. Ann. Appl. Probab. 29(3), 1640–1684 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Angiuli, C.V. Graves, H. Li, J.-F. Chassagneux, F. Delarue, R. Carmona, Cemracs 2017: numerical probabilistic approach to MFG. ESAIM: ProcS 65, 84–113 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. H.P. McKean, Jr. A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. USA 56, 1907–1911 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  35. A.-S. Sznitman, Topics in propagation of chaos, in École d’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Mathematical, vol. 1464 (Springer, Berlin, 1991), pp. 165–251

    Google Scholar 

  36. R. Carmona, F. Delarue, A. Lachapelle, Control of McKean-Vlasov dynamics versus mean field games. Math. Financ. Econ. 7(2), 131–166 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Carmona, F. Delarue, Mean field forward-backward stochastic differential equations. Electron. Commun. Probab. 18(68), 15 (2013)

    Google Scholar 

  38. R. Carmona, F. Delarue, Probabilistic Theory of Mean Field Games with Applications. I. Probability Theory and Stochastic Modelling, vol. 83 (Springer, Cham, 2018). Mean field FBSDEs, control, and games

    Google Scholar 

  39. A. Bensoussan, J. Frehse, Control and Nash games with mean field effect. Chin. Ann. Math. Ser. B 34(2), 161–192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Bensoussan, J. Frehse, S.C.P. Yam, Mean Field Games and Mean Field Type Control Theory. Springer Briefs in Mathematics (Springer, New York, 2013)

    Google Scholar 

  41. Y. Achdou, M. Laurière, Mean Field Type Control with Congestion. Appl. Math. Optim. 73(3), 393–418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Achdou, M. Laurière, On the system of partial differential equations arising in mean field type control. Discrete Contin. Dyn. Syst. 35(9), 3879–3900 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Y. Achdou, J. Han, J.-M. Lasry, P.-L. Lions, B. Moll, Income and Wealth Distribution in Macroeconomics: A Continuous-time Approach. Technical report, National Bureau of Economic Research (2017)

    Google Scholar 

  44. Y. Achdou, F.J. Buera, J.-M. Lasry, P.-L. Lions, B. Moll, Partial differential equation models in macroeconomics. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2028), 20130397, 19 (2014)

    Google Scholar 

  45. T. Bewley, Stationary monetary equilibrium with a continuum of independently fluctuating consumers, in Contributions to Mathematical Economics in Honor of Gerard Debreu, ed. by W. Hildenbrand, A. Mas-Collel (North-Holland, Amsterdam, 1986)

    Google Scholar 

  46. M. Huggett, The risk-free rate in heterogeneous-agent incomplete-insurance economies. J. Econ. Dyn. Control. 17(5–6), 953–969 (1993)

    Article  MATH  Google Scholar 

  47. S.R. Aiyagari, Uninsured idiosyncratic risk and aggregate saving. Q. J. Econ. 109(3), 659–84 (1994)

    Article  Google Scholar 

  48. P. Krusell, A.A. Smith, Income and wealth heterogeneity in the macroeconomy. J. Polit. Econ. 106(5), 867–896 (1998)

    Article  Google Scholar 

  49. H.M. Soner, Optimal control with state-space constraint. I. SIAM J. Control Optim. 24(3), 552–561 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. H.M. Soner, Optimal control with state-space constraint. II. SIAM J. Control Optim. 24(6), 1110–1122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. I. Capuzzo-Dolcetta, P.-L. Lions, Hamilton-Jacobi equations with state constraints. Trans. Am. Math. Soc. 318(2), 643–683 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  52. P. Cannarsa, R. Capuani, Existence and Uniqueness for Mean Field Games with State Constraints (2017)

    Google Scholar 

  53. P. Cannarsa, R. Capuani, P. Cardaliaguet, Mean Field Games with State Constraints: From Mild to Pointwise Solutions of the PDE System (2018)

    Google Scholar 

  54. F. Camilli, F. Silva, A semi-discrete approximation for a first order mean field game problem. Netw. Heterog. Media 7(2), 263–277 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. E. Carlini, F.J. Silva, A fully discrete semi-Lagrangian scheme for a first order mean field game problem. SIAM J. Numer. Anal. 52(1), 45–67 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. E. Carlini, F.J. Silva, A semi-Lagrangian scheme for a degenerate second order mean field game system. Discrete Contin. Dyn. Syst. 35(9), 4269–4292 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. E. Carlini, F.J. Silva, On the discretization of some nonlinear Fokker-Planck-Kolmogorov equations and applications. SIAM J. Numer. Anal. 56(4), 2148–2177 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. S. Cacace, F. Camilli, C. Marchi, A numerical method for mean field games on networks. ESAIM Math. Model. Numer. Anal. 51(1), 63–88 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. S. Cacace, F. Camilli, A. Cesaroni, C. Marchi, An ergodic problem for mean field games: qualitative properties and numerical simulations. Minimax Theory Appl. 3(2), 211–226 (2018)

    MathSciNet  MATH  Google Scholar 

  60. N. Almulla, R. Ferreira, D. Gomes, Two numerical approaches to stationary mean-field games. Dyn. Games Appl. 7(4), 657–682 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  61. D.A. Gomes, J. Saúde, Numerical methods for finite-state mean-field games satisfying a monotonicity condition. Appl. Math. Optim. 1, 1–32 (2018)

    Google Scholar 

  62. C. Bertucci, A remark on uzawa’s algorithm and an application to mean field games systems (2018). ar**v preprint: 1810.01181

    Google Scholar 

  63. R. Carmona, M. Laurière, Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: I–the ergodic case (2019). ar**v preprint:1907.05980

    Google Scholar 

  64. R. Carmona, M. Laurière, Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: Ii–the finite horizon case (2019). ar**v preprint:1908.01613

    Google Scholar 

  65. R. Carmona, M. Laurière, Z. Tan, Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning (2019). ar**v preprint:1910.12802

    Google Scholar 

  66. L. Ruthotto, S. Osher, W. Li, L. Nurbekyan, S.W. Fung, A machine learning framework for solving high-dimensional mean field game and mean field control problems (2019). ar**v preprint:1912.01825

    Google Scholar 

Download references

Acknowledgements

The research of the first author was partially supported by the ANR (Agence Nationale de la Recherche) through MFG project ANR-16-CE40-0015-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Achdou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Achdou, Y., Laurière, M. (2020). Mean Field Games and Applications: Numerical Aspects. In: Cardaliaguet, P., Porretta, A. (eds) Mean Field Games. Lecture Notes in Mathematics(), vol 2281. Springer, Cham. https://doi.org/10.1007/978-3-030-59837-2_4

Download citation

Publish with us

Policies and ethics

Navigation